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The bulk-boundary correspondence is a hallmark feature of topological phases of matter. Nonetheless, our un-
derstanding of the correspondence remains incomplete for phases with intrinsic topological order, and is nearly
entirely lacking for more exotic phases, such as fractons. Intriguingly, for the former, recent work suggests that
bulk topological order manifests in a non-local structure in the boundary Hilbert space; however, a concrete
understanding of how and where this perspective applies remains limited. Here, we provide an explicit and
general framework for understanding the bulk-boundary correspondence in Pauli topological stabilizer codes.
We show—for any boundary termination of any two-dimensional topological stabilizer code—that the bound-
ary Hilbert space cannot be realized via local degrees of freedom, in a manner precisely determined by the
anyon data of the bulk topological order. We provide a simple method to compute this “obstruction” using a
well-known mapping to polynomials over finite fields. Leveraging this mapping, we generalize our framework
to fracton models in three-dimensions, including both the X-Cube model and Haah’s code. An important con-
sequence of our results is that the boundaries of topological phases can exhibit emergent symmetries that are
impossible to otherwise achieve without an unrealistic degree of fine tuning. For instance, we show how linear
and fractal subsystem symmetries naturally arise at the boundaries of fracton phases.
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Topological phases are stable, gapped phases of matter
that do not exhibit a local order parameter—rather, they are
distinguished by the structure and pattern of their entangle-
ment [1, 2]. Their classification has seen tremendous activity
in the last decade, leading to a broad landscape that includes:
symmetry-protected topological (SPT) phases [3–18], intrin-
sic topological order [19–23] (both Abelian [24–26] and non-
Abelian [27–30]), and fracton phases [31–37]. A multitude
of features distinguish between these classes, ranging from
ground-state degeneracies to the nature of their excitations.

Nevertheless, a unifying expectation for all topological
phases is that some form of a bulk-boundary correspondence
should hold—i.e. a general statement that any universal prop-
erty of the bulk, can equivalently be probed by merely having
access to the boundary [9, 12, 38–41]. Despite this expecta-
tion, the precise nature of such a bulk-boundary correspon-
dence has only been fully established for SPT phases [17, 42–
51]. For intrinsic topological order, it is well-known that the
statistics of bulk excitations determine the possible gapped
phases on the boundary [52, 53]. However, by restricting to
gapped boundaries, this prescription does not provide a full
correspondence between the bulk and the boundary theory. To
this end, early conjectures identified a possible general corre-
spondence, where the bulk topological order leads to an “ob-
struction” on the boundary; in particular, it is impossible to
realize the boundary theory using only local degrees of free-
dom (i.e. a local tensor product Hilbert space) [54]. Recent
work has verified this conjecture in the toric code, the simplest
stabilizer model exhibiting topological order [54–56]. How-
ever, proving this correspondence as a general feature of in-
trinsic topological order remains an essential open question.
Finally, in the context of fracton phases, to date, no explicit
bulk-boundary correspondence has even been conjectured.

Our main results are three fold. First, we prove the bulk
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boundary correspondence conjectured above for all stabilizer
models exhibiting topological order. Our proof does not refer-
ence a particular choice of boundary, and only relies on certain
universal invariants of the boundary operator algebra, which
are directly inherited from the bulk topological order. Sec-
ond, for translationally-invariant stabilizer models, we intro-
duce a simple framework to analyze the boundary theory and
to compute these universal “obstructor” invariants by using
a well-known mapping to polynomials over finite fields [57].
Crucially, this framework immediately allows us to general-
ize the conjecture to fracton phases. In particular, we provide
an explicit bulk-boundary correspondence for both the X-cube
model as well as Haah’s code. We show that the bulk fracton
order leads to emergent subsystem symmetries in the bound-
ary theory, whose precise form is determined by the exchange
statistics and mobilities of bulk excitations. To the best of our
knowledge, these represent the first examples of a complete
bulk-boundary correspondence for fracton phases.

I. BACKGROUND AND SUMMARY OF RESULTS

Before proceeding to a full summary of our results, we first
provide a brief overview of existing results on bulk-boundary
correspondences in various classes of topological phases.

A. Review of previous results

Symmetry-protected topological phases.—The bulk-
boundary correspondence is perhaps best understood in
the context of SPT phases. SPTs are gapped phases of
matter whose ground states can be adiabatically connected to
product states by general unitary operations, but cannot be
adiabatically connected by unitary operations preserving a
given symmetry [3–17]. The bulk-boundary correspondence
in SPT phases is related to the action of the symmetry on the
boundary of the system. For example, in one-dimensional
SPTs, each boundary of the system is acted upon by a
projective representation of the symmetry group [9, 12]. This
can be generalized to higher-dimensional SPTs, where the
symmetry acts on the boundary in such a way that it cannot
be consistently coupled to a dynamical gauge field. (This
is understood more generally as an ’t Hooft anomaly [58].)
This action of the symmetry on the boundary has important
consequences for the boundary physics, as it places con-
straints on the allowed boundary Hamiltonians, which must
respect the symmetry. Perhaps the most notable example of
this is the topological insulator, which exhibits gapless edge
modes protected by charge conservation and time-reversal
symmetry [38–41].

Topological order in two dimensions.—The bulk-boundary
correspondence of intrinsic topological order is comparatively
less understood than that of SPTs. Nonetheless, a number of
key features have been identified. A central conjecture is that
the bulk topological order leads to emergent symmetries in
the boundary theory; more precisely, there exists a one-to-one
correspondence between the set of allowed boundary Hamil-

tonians and the set of Hamiltonians that obey the emergent
symmetry1 [39–41, 54–56, 59–72]. The translation between
the bulk topological order and the emergent boundary sym-
metry is known in many cases [39–41]. However, the cor-
respondence has only been verified explicitly in a handful of
microscopic models [73–76]. Indeed, recent work suggests
that some intrinisic topological orders may not fit into this
framework (specifically, those with boundaries that cannot be
gapped by any local perturbation) [77, 78].

Building upon these ideas, several recent works have ex-
plored the implications of this correspondence for the struc-
ture of the boundary Hilbert space. In particular, it is con-
jectured that the emergent symmetries arising from the bulk
topological order imply that the boundary Hilbert space does
not admit a local tensor product description [54]. This has
been analyzed for a particular boundary termination of toric
code, which is easily shown to be equivalent to a local tensor
product space augmented with a non-local “Ising symmetry”
constraint (see Section II for a detailed review). However,
extending this mapping to more general models and bound-
ary terminations, as well as proving that the boundary Hilbert
space must not be a local tensor product, remain open direc-
tions.

Topological order in higher dimensions.— Even more open
questions abound in higher dimensions. For example, the
enumeration of all possible gapped boundaries for the sim-
plest three-dimensional topological order, the toric code, re-
mains an active direction of research [79–81]. As another
example, one class of three-dimensional models where the
bulk-boundary correspondence is particularly simple are the
Walker-Wang models [82], where the three-dimensional topo-
logical order is explicitly constructed to give rise to some de-
sired anyon theory on the boundary. Several additional inter-
esting models have been constructed, and analyzed, using this
approach [83–87].

Fracton phases.—As for other higher-dimensional topolog-
ical orders, the bulk-boundary correspondence for fracton or-
ders has remained relatively unknown. There have been sev-
eral studies of the possible gapped boundary Hamiltonians
that can be realized for specific terminations of the X-Cube
and Chamon models [88–90], as well as further analysis of
logical encodings in Haah’s code [91]. In particular, Ref. [89]
and [92] finds that there exist emergent subsystem symme-
try constraints on the (100)-boundary of the X-Cube and 2-
foliated fracton models respectively, and Ref. [93] finds a sim-
ilar connection when constructing bulk models given a desired
2D boundary theory. However, a complete understanding of
the bulk-boundary correspondence, even within these models,
remains lacking.

1 This is referred to variously as “categorical symmetry” [54, 56, 59–65] or
SymTFT/SymTO [55, 66–71] in the literature.
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B. Summary of main results

We now summarize our main results, in order of their ap-
pearance in the remainder of the paper.

We begin in Section II by reviewing known results for
the bulk-boundary correspondence in the 2D toric code
model [54]. In particular, we describe the known mapping
between the Hilbert space of the smooth toric code bound-
ary and the symmetric sector of a 1D transverse-field Ising
model. We review how the “emergent” Ising symmetry on the
boundary arises from a conservation law of the bulk topolog-
ical order, i.e. a set of stabilizers that product to the identity
in the bulk. The termination of the conservation law on the
boundary gives rise to a constraint on the boundary operator
algebra, which is interpreted as an emergent symmetry.

Inspired by this example, in Section III we introduce our
framework for the bulk-boundary correspondence in two-
dimensional topological stabilizer codes. Our framework ap-
plies quite broadly, since recent work has shown that two-
dimensional stabilizer codes can realize any Abelian topolog-
ical order with a gappable boundary [94]. To do so, we extend
the toric code analysis above to general two-dimensional topo-
logical stabilizer codes. We show that each anyon in the bulk
topological order is associated with a stabilizer conservation
law, which gives rise to a non-local constraint on the bound-
ary operator algebra. To analyze the non-local structure of
the boundary theory, we show that certain features of bound-
ary operator algebra—corresponding to the commutation re-
lations of these constraints—cannot be realized in any local
tensor product Hilbert space. We formalize this by defining
“obstructor invariants” for each pair of boundary constraints.
We show that the obstructor invariants are in one-to-one cor-
respondence with the braiding statistics of anyons in the bulk
topological order, and prove that any non-zero obstructor in-
variant implies that the boundary cannot be locally realized.

In Section IV, we provide a different perspective on this
bulk-boundary correspondence by utilizing a mapping [57]
from translation-invariant stabilizer models to polynomials
over finite fields. We show that the bulk conservation laws
correspond to zeros of associated polynomials, and similar for
the boundary constraints (in particular, for a polynomial asso-
ciated with the frustration graph of local boundary operators).
The obstructor invariants correspond to first derivatives of the
polynomials, at the location of the zeros.

Finally, in Sections V and VI, we extend our framework
to three-dimensional fracton models. In Section V, we de-
scribe the bulk-boundary correspondence for Type-I fracton
orders, focusing on the X-Cube model for concreteness. We
show that the bulk conservation laws give rise to linear “sub-
system” constraints on the boundary operator algebra, which
can be interpreted as emergent subsystem symmetries in the
boundary theory. Analogous to the two-dimensional setting,
we define obstructor invariants associated to these constraints,
and show that they are in one-to-one correspondence with the
mutual [95] and self [96] statistics of the bulk fractons. In-
triguingly, we find that the structure of the boundary Hilbert
space depends on the orientation of the boundary considered;
for example, the bulk self statistics lead to an obstructor in-

variant on the (111)-boundary, but not on the (001)- or (110)-
boundaries. In analogy to our results for two-dimensional sta-
bilizer models, we prove that any non-trivial obstructor invari-
ant implies that the boundary Hilbert space cannot be realized
as a tensor product of one-dimensional Hilbert spaces. This
provides a sharp distinction between the boundaries of Type-I
fracton phases and, for example, the boundary of a stack of
2D toric codes. Lastly, within the polynomial formalism, we
show that the obstructor invariants correspond to multivariate
derivatives of associated polynomials.

In Section VI, we consider topological stabilizer codes with
fractal conservation laws, which include seminal Type-II frac-
ton phases such as Haah’s code [32]. Making heavy use of the
polynomial formalism, we show that all of the core ideas of
the previous sections generalize to these models. In particular,
the bulk conservation laws can be formulated using the mathe-
matical notion of an ideal, and similar for the constraints they
impose upon the boundary. These constraints can be viewed
as emergent fractal subsystem symmetries in the boundary
theory. The obstructor invariants, in turn, are related to quo-
tients over these ideals. We illustrate this explicitly in a large
class of fracton stabilizer codes [33], and, within a simpler
subset of these codes, we show that the obstructor invariants
are related to the exchange statistics of bulk fractons. We con-
clude in Section VII with prospects for future work.

II. REVIEW OF THE TORIC CODE BOUNDARY

We begin by reviewing the boundary Hilbert space of the
toric code model [52, 54, 56]. In Sec. II A we introduce the
toric code model. In Sec. II B, we turn to the boundary Hilbert
space and review arguments that it does not obey a local tensor
product structure [54].

A. Toric code model

The toric code is defined on a 2D square lattice with spins
residing on each bond (Fig. 1). The spins are labelled by their
unit cell, i = (ix, iy) ∈ Z2. The Hamiltonian takes the form:

HTC = −
∑
i

σZ
i −

∑
i

σX
i , (1)

where we define the 4-spin vertex and plaquette operators, σZ
i

and σX
i , as:

σZ
i = Zi−x̂,xZi−ŷ,yZi,xZi,y,

σX
i = Xi,xXi+x̂,yXi+ŷ,xXi,y.

(2)

Here, subscripts denote the unit cell and orientation of single-
qubit Pauli operators, Pi,m, for P ∈ {1, X, Y, Z}, where
x̂ = (1, 0), ŷ = (0, 1) are unit vectors. The Hamiltonian
is fully commuting, thus its ground states satisfy, σZ

i |GS⟩ =
σX
i |GS⟩ = |GS⟩ for all i.
Excitations above the toric code ground state, or quasipar-

ticles, are labelled by the Hamiltonian terms that they violate.
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FIG. 1. (a) Plaquette (red) and vertex (blue) stabilizers of the toric
code. (b) String operators that violate the vertex and plaquette terms
correspond to e and m quasiparticles, respectively. (c) The bound
state of one e and one m quasiparticle corresponds to the fermionic
quasiparticle f .

They can be decomposed into three types: e-particles, which
violate the plaquette terms, σX

i ;m-particles, which violate the
vertex terms, σZ

i ; and f -particles, corresponding to a bound
state of e- and m-particles. The toric code quasiparticles pos-
sess a few notable features. First, the parity of each quasi-
particle is conserved. This arises from conservation laws of
the stabilizer operators, i.e. extensive sets of stabilizers that
product to the identity. In the toric code, we have:∏

i

σX
i = 1,

∏
i

σZ
i = 1, (3)

which hold exactly under periodic boundary conditions, and
enforce the parity of e- and m-particles (and thus, f -particles
as well) to be even. Parity conservation implies that local per-
turbations can create only pairs of quasiparticles. Individual
quasiparticles are obtained by separating these pairs via non-
local string operators (Fig. 1b).

These string operators can in fact be obtained from the con-
servation laws themselves. Consider the product of all ver-
tex stabilizers in a finite region (Fig. 2). From Eq. (3), the
stabilizers product to the identity on spins inside the region.
The two-dimensional product of stabilizers is thus reducible
to a one-dimensional product of operators along the region’s
boundary. By “cutting” this one-dimensional product in half,
one obtains a string operator that can create excitations only
at its ends, since the middle of the string commutes with all
stabilizers. In the toric code, performing this procedure for
vertex or plaquette stabilizers produces a string that excites
m- or e-particles, respectively.

Finally, the quasiparticles possess non-trivial braiding
statistics. The mutual statistics of two quasiparticles are de-
fined as the phase acquired by the many-body wavefunction
when one particle is transported in a loop about the other. This
can be computed from the commutator of two string operators
(one for each type of quasiparticle) that intersect, see Fig. 3.
In the toric code, the e- and m-particles have non-trivial mu-
tual statistics, acquiring a phase eiπ = −1 (and similar the e-
and f -particles, and m- and f -particles). Quasiparticles can
also possess non-trivial self statistics, defined as the phase ac-
quired when exchanging the locations of two quasiparticles of

FIG. 2. The conservation laws of the toric code are formed by prod-
ucts over plaquette (red) or vertex (blue) stabilizers. When taking the
product over a finite region, one obtains a string operator moving e
or m quasiparticles along the boundary.

the same species. On the lattice however, the exchange pro-
cess must be carefully designed so that non-universal phase
factors do not contribute. An example of such a process is
the three-prong exchange process shown in Fig. 3 [97]. In the
toric code, only the f -particle has non-trivial self statistics,
with phase eiπ = −1.

B. Boundary Hilbert space

We now turn to the boundary of the toric code model. We
are interested in the structure of the boundary degrees of free-
dom when the bulk is in the ground state. For concreteness,
we specify to a smooth boundary along the iy = 0 edge of
the lattice (Fig. 4). We define the bulk stabilizers of the model
as the vertex and plaquette operators whose spins lie entirely
within the boundary. This corresponds to vertex operators
(σZ

i ) with iy > 0, and plaquette operators (σX
i ) with iy ≥ 0

[as defined in Eq. (2)]. The boundary Hilbert space is the
manifold of states where all bulk stabilizers have eigenvalue
one

Hbndry ≡
{
|ψ⟩ |σZ

i |ψ⟩ = σX
i |ψ⟩ = |ψ⟩ ∀ i with iy ≥ 0

}
,

(4)
i.e. where the bulk is in the ground state.

In our work, we will study the boundary Hilbert space
through the set of operators that act upon it2. To construct
these operators, we first observe that any boundary operator
must commute with every bulk stabilizer, in order to leave
the bulk in the ground state. Now, note that such an opera-
tor is easily obtained by truncating the iy < 0 components of
any stabilizer on the infinite lattice (i.e. the lattice that would
exist if there were no boundary). This is shown in Fig. 4.

2 A gapped boundary can be obtained by choosing a maximal set of com-
muting boundary operators, which correspond to a Lagrangian subgroup.
Often in the literature, there is a canonical choice of such operators for dif-
ferent boundary terminations (e.g. on a smooth or rough boundary). How-
ever, this choice is in some ways arbitrary, and in fact a single boundary
termination already contains many non-commuting boundary operators.
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FIG. 3. (a) The e and m quasiparticles exhibit mutual braiding statis-
tics, as seen from the fact that their string operators anti-commute
where they intersect. (b) The f quasiparticle exhibits non-trivial self
statistics, as seen from the overall minus sign accumulated during the
three-prong exchange process.

On the lattice spins, iy ≥ 0, the boundary operator is equal
to what would have been a bulk stabilizer had the boundary
not existed. The mutual commutation of stabilizers on the in-
finite lattice guarantees that the truncated boundary operator
and non-truncated bulk stabilizers mutually commute.

In the toric code, this produces two types of boundary op-
erators3, which we denote by σ̃. First, we have the three-spin
operator σ̃Z

ix
, which is equal to a vertex operator with its up-

permost spin truncated,

σ̃Z
ix = Z(ix−1,0),xZ(ix,0),yZ(ix,0),x, (5)

where we have taken iy = 0. Second, we have the single-spin
operator σ̃X

ix
, which is obtained from the plaquette operator

with its upper three spins truncated,

σ̃X
ix = X(ix,0),x. (6)

As a result of the truncation, the boundary operators do not
necessarily commute with one another.

The boundary operator algebra generated by the truncated
operators above is augmented by global constraints arising
from the bulk conservation laws. Specifically, the product of

3 On the specific boundary considered here, these operators in fact form a
generating set for the entire boundary operator algebra. However, this is
not guaranteed in general. As a trivial example, consider an isolated one-
dimensional chain of spins (e.g. the uppermost horizontal spins in Fig. 4)
and view it as the boundary of a fictional bulk toric code model. The ver-
tex stabilizers truncate to two-site operators, ZiZi+1 while the plaquette
stabilizers truncate to (two copies of the) single-site operators Xi. The
single-site operator Zi is allowed on the boundary, but is not generated by
any truncated bulk operator.

FIG. 4. Local boundary operators in the toric code are obtained by
truncating stabilizers that cross the boundary. The truncated bound-
ary operators commute with all bulk stabilizers, but not necessarily
with one another.

all bulk stabilizers of a given type [as in Eq. (42)] is not equal
to the identity on a finite lattice, but rather to the product of
all boundary operators of the same type:∏

i∈bulk

σZ
i =

∏
ix∈bndry

σ̃Z
ix ,

∏
i∈bulk

σX
i =

∏
ix∈bndry

σ̃X
ix . (7)

When the bulk is in the ground state this product is equal to
one, ∏

ix∈bndry

σ̃Z
ix =

GS
1,

∏
ix∈bndry

σ̃X
ix =

GS
1, (8)

which enforces global constraints on the boundary operator
algebra.

This construction leads to a convenient physical picture for
the boundary Hilbert space of the toric code model [54, 55].
Namely, the boundary Hilbert space is equivalent to the
Hilbert space of a one-dimensional spin chain restricted to a
global Z2 symmetry sector,

∏
ix
Xix |ψ⟩ = |ψ⟩. To see this,

observe that a generating set of operators that commute with
the symmetry is given byZixZix+1 andXix , familiar from the
transverse field Ising model. The algebra generated by such
terms is exactly equivalent to the boundary operator algebra
of the toric code. In particular, the frustration graphs of the
operators (i.e. the pattern of how pairs of operators commute
or anti-commute, Fig. 5) are identical: neighboringX- and Z-
operators anti-commute. The constraints are identical as well,
since in the Ising model, the product of all Z-type operators is
trivially the identity,

∏
ix
ZixZix+1 = 1, while the product of

X-type operators is equal to one within the symmetric sector.

III. OBSTRUCTOR INVARIANTS IN 2D STABILIZER
MODELS

We now turn to the question: What, if any, are the distin-
guishing features of the boundary Hilbert space of stabilizer
models with topological order? This question is motivated by
the mapping in the previous section, where we saw that the
boundary Hilbert space of the toric code model is isomorphic
to the symmetric sector of a local tensor product space. This is
in contrast to the boundary Hilbert space of a model without
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topological order, where the boundary is a simple local ten-
sor product space (since the bulk can be disentangled from the
boundary by a finite-depth unitary circuit). From this observa-
tion, Ref. [54] conjectured that any boundary Hilbert space of
the toric code cannot be realized as a 1D local tensor-product
Hilbert space (LTPS).

In this section, we provide a framework for understanding
the structure of the boundary Hilbert space of stabilizer mod-
els. Our framework centers on two features of the boundary
operator algebra, introduced in the previous section: the frus-
tration graph of local boundary operators (i.e. the pattern of
how they commute and anti-commute), and the global con-
straints enforced on these operators by the bulk conservation
laws. We will show that by taking finite “patches” of the
global constraints [56, 63], and considering their commuta-
tion relations, we can construct invariants that quantify the
precise obstruction to realizing the boundary Hilbert space as
a local tensor product. We call these obstructor invariants. In
particular, we can use the obstructor invariants to prove the
conjectured bulk-boundary correspondence in Ref. [54], for
both the specific toric code boundary previously considered,
and, more generally, for any boundary termination of any two-
dimensional stabilizer model with topological order.

The section proceeds as follows. In Sec. III A we intro-
duce the notion of a patch operator as well as our first exam-
ple of an obstructor invariant—the self-obstructor invariant—
on the toric code boundary. We show that a non-trivial
self-obstructor invariant arises as a consequence of the self
statistics of the fermionic quasiparticle of the toric code. In
Sec. III B, we introduce a second class of invariants——the
mutual-obstructor invariants—and show they arise from the
mutual statistics of bulk quasiparticles. In Sec. III C we con-
struct the boundary operator algebra for generic 2D stabilizer
models, and in Sec. III D we generalize our results on obstruc-
tor invariants to this context.

A. Self-obstructor invariants in the toric code model

To motivate our construction, we begin with a short proof
that the toric code boundary discussed previously cannot be
realized in any 1D local tensor product space (LTPS). Our
proof follows directly from the frustration graph of local
boundary operators, depicted in Fig. 5. The graph contains an
edge between each pair of local boundary operators that anti-
commute. (This method can be extended to qudits by labelling
each edge by an element of Zd.) Note that the commutation
of any product of boundary operators with another product is
given by the parity of the number of lines extending from one
product to the other.

We need one additional ingredient to show that the bound-
ary is not a 1D LTPS: the global constraints [Eq. (8), top of
Fig. 5]. In particular, the product of the Z- and X-constraints
contains all boundary operators in the frustration graph. From
Eq. (8), this product is equal to the identity within the bound-
ary Hilbert space. Now, consider splitting this constraint
in half, into the product of a left and a right “patch opera-
tor” [54, 56, 63], as shown in the middle panel of Fig. 5.

FIG. 5. Boundary operator algebra of the toric code. The opera-
tors σ̃Z and σ̃X are abbreviated Z and X , respectively. A solid line
connecting two operators signifies that the operators anti-commute.
(Top) The e (red) and m (blue) constraints are formed from prod-
ucts of all σ̃Z and σ̃X operators, respectively. (Middle) The self-
obstructor invariant for the f constraint (purple) is given by the com-
mutation of two adjacent patch operators, L̂f

j and R̂f
j . The patches

anti-commute because they share a single line between them. (Bot-
tom) The mutual-obstructor invariant for the e and m constraints is
given by the commutation of two overlapping patch operators, L̂m

i

and R̂e
j , which also anti-commute.

Specifically, we can take the left patch operator, L̂, to be equal
to the product of all boundary operators with ix < 0 and the
right patch operator, R̂, similarly with ix ≥ 0. Now, the con-
straint implies that the two patch operators product to the iden-
tity (up to a possible sign), L̂R̂ ∝

GS
1. At the same time, the

two patch operators must anti-commute since a single edge
extends between them in the frustration graph (Fig. 5).

Now, if the toric code boundary operator algebra could be
realized in a 1D LTPS, then the patch operators in the LTPS
would instead obey the strict equality, L̂R̂ ∝ 1. However,
this is inconsistent with the anti-commutation of the patch op-
erators, since a matrix and its inverse must commute. We con-
clude that the boundary operator algebra of the toric code can-
not be realized in any 1D LTPS.

In what follows, we generalize the above argument by in-
troducing the notion of a self-obstructor invariant. To formu-
late the self-obstructor invariant, let us first define the patch
operators more generally. For each bulk conservation law α
(which can be associated to an anyon type, α ∈ {1, e,m, f}),
we define the left and right patch operators at site j as follows:

L̂m
j =

j−1∏
ix=−∞

σ̃Z
ix R̂m

j =

∞∏
ix=j

σ̃Z
ix (9)

L̂e
j =

j−1∏
ix=−∞

σ̃X
ix R̂e

j =

∞∏
ix=j

σ̃X
ix (10)

L̂f
j =

j−1∏
ix=−∞

σ̃Z
ix σ̃

X
ix R̂f

j =

∞∏
ix=j

σ̃Z
ix σ̃

X
ix . (11)

We also have the trivial patch operators L̂1
j = R̂1

j = 1. The
patch operators L̂ and R̂ defined in our previous argument cor-
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FIG. 6. (Left) A patch operator on the boundary can be deformed into a string operator in the bulk, via multiplication with bulk stabilizers.
(Middle) The self-obstructor invariant q̃(α) [Eq. (16)], is equal to the commutator of the two patch operators L̂α

i , R̂α
i . This commutator can

be re-written in the bulk as a three-prong exchange process for the quasiparticle α, and is thus equal to the self statistics q(α). (Right) The
mutual-obstructor invariant b̃(α, β) [Eq. (16)] is equal to the commutator of the patch operators shown, and can similarly be re-written in terms
of the mutual statistics of the bulk quasiparticles α and β.

respond to L̂f
0 and R̂f

0 , respectively. The global constraints
imply that the two patch operators product to the identity
(again, up to a sign),

L̂α
j R̂

α
j ∝

GS
1, (12)

for every conservation law α and every site j.
Now, for each boundary constraint α, we define the self-

obstructor invariant, q̃(α), as the phase acquired when com-
muting the left and right patch operators:

exp

(
2πi

d
q̃(α)

)
= [R̂α

j , L̂
α
j ]. (13)

Here [A,B] = ABA−1B−1 is the group commutator, in con-
trast to the usual commutator for quantum mechanical opera-
tors. In translation-invariant models, the commutator is auto-
matically independent of the site j; this will also follow from
our later arguments linking the commutator to the bulk statis-
tics. In the toric code model, the e andm constraints give zero
self-obstructor invariant while the f constraint gives

exp

(
2πi

d
q̃(f)

)
= −1. (14)

This is precisely the anti-commutation in the proof at the be-
ginning of this section. Following the above proof, we see
that whenever any self-obstructor invariant is not equal to one,
then the boundary Hilbert space cannot be a 1D LTPS.

As our naming suggests, the self-obstruction invariant is re-
lated to the self statistics of the bulk topological order: specif-
ically, the self statistics of the quasiparticle labelling the patch
operator of interest. This is visualized in Fig. 6. To derive this
correspondence, recall that the boundary constraint is formed
by an extensive product of bulk stabilizers [Eq. (7)]. By multi-
plying the patch operators L̂α

j and R̂α
j by adjacent bulk stabi-

lizers, we can deform the patch operators into string operators

that travel through the bulk and terminate on the boundary at
site j. Crucially, this multiplication does not change the patch
operators’ commutation because the bulk stabilizers commute
amongst themselves, and with all boundary operators.

The string operators obtained above move quasiparticles of
type α through the bulk. By arranging these string operators
as in the middle panel of Fig. 6, we see that the commuta-
tion of the boundary patch operators—i.e. the self-obstructor
invariant—is exactly equal to the self statistics of the corre-
sponding bulk quasiparticle. Specifically, considering α = f ,
we have

exp

(
2πi

d
q̃(f)

)
= R̂f

j L̂
f
j (R̂

f
j )

†(L̂f
j )

†

= Ĉf B̂f Âf (Ĉf )†(B̂f )†(Âf )†

= −1,

(15)

where the strings Âf , B̂f , Ĉf are as shown in Fig. 6. The mul-
tiplication by bulk stabilizers deforms the left patch operator
into the product L̂f ∝

GS
Âf B̂f , and the right patch operator

into the product R̂f ∝
GS

Ĉf B̂f . The equality above follows

from plugging these expressions into the LHS above and can-
celling a factor of B̂f (B̂f )† = 1 in the center of the product.

B. Mutual-obstructor invariants in the toric code model

A variation of the construction above allows us to connect
to the bulk mutual statistics as well. Namely, we again con-
sider two patch operators, but now for different boundary con-
straints α and β. Moreover, instead of taking the patch opera-
tors to meet at a single point, we will take them to overlap in
the manner shown in the right panel of Fig. 6. Specifically, we
consider the patch operators R̂α

i and L̂β
j , where j > i+K and

K is the maximum range of any bulk stabilizer (i.e. K = 1
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in the toric code). The commutator of these patch operators
constitutes the mutual-obstructor invariant, b̃(α, β):

exp

(
2πi

d
b̃(α, β)

)
= [R̂α

i , L̂
β
j ]. (16)

This quantity is independent of i, j within the regime j >
i + K, since any two left patch operators within this regime
differ only by local boundary operators that commute with the
right patch operator (since they are contained entirely inside
of it), and vice versa.

As an example, consider the mutual-obstructor invariant for
patch operators e and m. This is given by the group commu-
tator of R̂e

i and L̂m
j . Observing the frustration graph (bottom

panel of Fig. 5), we see that for j > i + K the number of
anti-commutations is always odd. We therefore find

exp
2πi

d
b̃(e,m) = −1. (17)

Similarly, when deforming the patch operators into the bulk as
shown in the right panel of Fig. 6, we find a single crossing of
the anyon strings for α and β. The mutual-obstructor invariant
is therefore given by mutual statistics of the bulk e and m-
quasiparticles.

Like the self-obstructor invariant, any non-zero value of the
mutual-obstructor invariant implies that the boundary theory
cannot be realized as a 1D local tensor product space. To
show this, note that the following quantity is proportional to
the identity,

L̂e
i L̂

m
j R̂

e
i R̂

m
j ∝

GS
1 (18)

in the boundary Hilbert space. For jj > i +K, the commu-
tation between the right patch operators, R̂e

i R̂
m
j , and the left

patch operators, L̂e
i L̂

m
j , is simply given by the commutation

of R̂m
j and L̂e

i . This follows because all other pairs of left and
right patch operators are mutually commute. We thus find,

[R̂e
i R̂

m
j , L̂

e
i L̂

m
j ] = [R̂m

j , L̂
e
i ] = exp

2πi

d
b̃(e,m) = −1. (19)

By the same arguments we applied to the self-obstructor in-
variant, the above result, combined with Eq. (18), shows that
the boundary is not a 1D local tensor product space.

Finally, as for the self-obstructor invariant, the mutual-
obstructor invariant is directly given by the mutual statistics
of the corresponding bulk quasiparticles. Deforming the two
patch operators into the bulk strings as in the right panel of
Fig. 6, we find that their commutation is given by the mu-
tual statistics of the e and m-quasiparticles. Interestingly, in
the bulk, we know that the mutual statistics of the e and m-
quasiparticles and the self statistics of the f -quasiparticles are
in fact the same quantity (since we can obtain the f anyon by
fusing e and m). This implies that a similar relation should
hold for the boundary obstructor invariants. In Sec. III D, we
prove such relations directly for the boundary obstructor in-
variants without reference to the bulk.

C. Boundary operator algebra in generic 2D stabilizer models

We now extend the our framework to generic translation-
invariant stabilizer models. We focus for now on two-
dimensional systems, and turn to three-dimensions in Sec-
tions V and VI. Our results show that any 2D translation-
invariant stabilizer model with bulk topological order cannot
have a local tensor product boundary, as quantified by the ob-
structor invariants.

We consider translation-invariant stabilizer models in two-
dimensions with n-dimensional qudits and M stabilizers per
unit cell. Under these conditions, the Hamiltonian can be writ-
ten as a sum of commuting stabilizers

H = −
∑
i

M∑
m=1

σm
i . (20)

We assume the stabilizers, σm
i , are geometrically local, in the

sense that their support is contained within a K × K grid of
unit cells about site i. We also assume that the stabilizers are
maximal, in the sense that there are no further independent
stabilizers σM+1

i that can be added to the model that mutually
commute with all current stabilizers, σ1

i , . . . , σ
M
i . In what

follows, we outline how each aspect of the previous section
extends to such models.

Bulk conservation laws.—We begin by addressing the bulk
conservation laws. These correspond to products of stabiliz-
ers that equal the identity (up to phase factor) on an infinite
lattice4: ∏

i

M∏
m=1

(σm
i )

cαm ∝ 1. (21)

Here, each conservation law, indexed by α, is specified by the
powers, cαm ∈ Zn, of each stabilizer involved. Note that the
set C of conservation laws forms an Abelian group, i.e. given
two conservation laws α, β ∈ C, we can define a third conser-
vation law αβ ∈ C via cαβm = cαm + cβm.

As in the toric code, each conservation law α is naturally
mapped to a quasiparticle by noting that the restriction of a
conservation law to a finite region is equal to a loop opera-
tor that moves some quasiparticle around the region’s bound-
ary. Cutting the loop at two points produces a string operator
that commutes with the stabilizers in its center, and thus has
a well-defined quasiparticle type at either end. This mapping
is in fact onto, i.e. each quasiparticle in turn generates a con-
servation law5. Therefore, moving forward, we will use the
label α for both the quasiparticles and conservation laws in-
terchangeably.

4 We note that here, we have assumed that all conservation laws involve
products of stabilizers over every unit cell [as in Eq. (42)]. For periodic
conservation laws, this can always be ensured by enlarging the unit cell to
encompass the given periodicity. In Section VI, we will extend this formal-
ism to include fractal conservation laws.

5 To see this, construct a loop operator ℓi that transports a quasiparticle α in
a 1 × 1 square beginning at site i. By definition ℓi obeys a conservation
law, since taking the product of ℓi over a finite region gives a loop operator
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Boundary operator algebra.—Turning to the boundary
Hilbert space, we note that the procedure for obtaining bound-
ary operators by truncating bulk stabilizers is also entirely
general. Specifically, we decompose a given bulk stabilizer
as a product of operators at each value of the y-coordinate,

σm
i =

iy+K−1∏
j=iy

[σm
i ]j , (22)

where each term on the right has support only within unit cells
at y-coordinate j. The product is overK values of j, whereK
is maximum range of the stabilizer. We assume these values
run from iy to iy + K − 1 (since we can always shift the
stabilizers such that this is the case). Truncating translations
of this operator along the boundary, iy = 0, produces K − 1
boundary operators labeled by the initial iy value, k, of the
truncated operator,

σ̃m,k
ix

=
K−1∏
j=k

[
σm
(ix,−k)

]
−k+j

, (23)

Here k runs from 0 to −K + 2.
The termination of bulk conservation laws onto boundary

constraints proceeds similarly. Namely, the conservation law
Eq. (21) is generalized to:

∏
i∈ bulk

M∏
m=1

(
σi
m

)cαm =
∏

ix∈ bndry

M∏
m=1

K∏
k=1

(
σ̃m,k
ix

)cαm
, (24)

where the product includes the boundary operators for all “ini-
tial iy values”, as discussed in above. When the bulk is in the
ground state, this equality implies the following constraint on
the boundary operator algebra,

∏
ix∈ bndry

[
M∏

m=1

K∏
k=1

(
σ̃m,k
ix

)cαm]
∝
GS
1. (25)

In addition to these global constraints, we may also have local
constraints on the truncated boundary operators of the form∏

j(σ
ij
mj )

cj ∝
GS

1, whenever a local product of boundary oper-

ators is equal to a local product of bulk stabilizers. This will
not be the case for the models we consider in the main text,
but does arise in other models, such as the stabilizer double-
semion model [94], which we address in Appendix G.

D. Obstructor invariants in generic 2D stabilizer models

Our construction of the patch operators for generic stabi-
lizer models again resembles our construction for the toric

acting only on the boundary. To write this conservation law in the form
Eq. (21), note the loop operator can be written as a product of stabilizers,
ℓi =

∏
j(σ

m
j )c

j
m . The conservation law described by cαm =

∑
j c

j
m

corresponds to the quasiparticle α.

code. For each conservation law α, we define the left and
right patch operators at a boundary site j,

L̂α
j =

j−1∏
ix=−∞

∏
m,k

(
σm,k
ix

)cαm
, R̂α

j =

∞∏
ix=j

∏
m,k

(
σm,k
ix

)cαm
.

(26)

The boundary constraints imply that the two operators product
to one,

L̂α
j R̂

α
j =

∞∏
ix=−∞

∏
m,k

(
σm,k
ix

)cαm
∝
GS
1. (27)

Patch operators in hand, we define the obstructor invariants
as follows:

1. For each constraint α on the boundary operator algebra,
we define the self-obstructor invariant:

exp
2πi

d
q̃(α) = R̂α

i L̂
α
i (R̂

α
i )

†(L̂α
i )

†. (28)

2. For each pair of constraints α and β, we define the
mutual-obstructor invariant:

exp
2πi

d
b̃(α, β) = R̂α

i L̂
β
j (R̂

α
i )

†(L̂β
j )

†. (29)

The obstructor invariants possess a number of convenient
properties, many of which we observed in our discussion of
the toric code boundary. First, as mentioned in Sec. III B, the
obstructor invariants have a convenient property that q̃ defines
a quadratic form on the boundary constraints, and b̃ is its asso-
ciated bilinear form. That is, one can confirm that they satisfy:

1. q̃(αn) = n2q̃(α),

2. b̃(αγ, β) = b̃(α, β)+ b̃(γ, β) (and similarly for the sec-
ond argument),

3. b̃(α, β) = q̃(αβ)− q̃(α)− q̃(β),

We prove these properties in Appendix A.
Relation to bulk statistics.—As in the toric code, the values

of the obstructor invariants are inherited from the bulk topo-
logical order. This arises directly from the definition of the
constraints (and in turn, the patch operators) as the boundaries
of bulk conservation laws. As before, using this correspon-
dence we can always multiply boundary patch operators by
products of bulk stabilizers, in order to express the obstructor
invariant as the commutator of string operators that overlap
only in the bulk (Fig. 6). The commutation of the bulk string
operators is equal to the exchange statistics of the anyons that
each string operator creates at its ends. Thus, the obstructor
invariants on the boundary Hilbert space are directly deter-
mined by the bulk anyon data. We provide a detailed proof
of this equality for translation-invariant stabilizer models in
Appendix B.

Invariance under local tensor products.—We will now
show that the obstructor invariants are indeed invariants: that
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is, they are unchanged upon taking tensor products of the
boundary theory with any local tensor product space. To be-
gin, let us first show that the obstructor invariants are equal to
zero in any 1D LTPS. Consider a LTPS and suppose that, sim-
ilar to the boundary Hilbert space, it contains infinite collec-
tions of K-local operators σm,TP

i that product to the identity,

∞∏
i=−∞

∏
m

(
σm,TP
i

)cαm
∝ 1. (30)

This contains a strict equality (up to a phase) since we are
working in a LTPS (i.e. we assume there are no global con-
straints arising from a bulk).

To formulate the obstructor invariants, consider splitting the
infinite product into two patch operators6, L̂α,TP

i and R̂α,TP
i , at

some site i. By spatial locality, the left string can have sup-
port only on sites less than i + K, and the right string only
for sites greater than i − K. Since the equality in Eq. (30)
is strict, this implies that both L̂α,TP

i and R̂α,TP
i contain sup-

port only within the region [i − K, i + K]. Since the two
patch operators product to the identity, they also must prod-
uct to the identity within the region [i−K, i+K]. However,
any two operators that product to the identity necessarily com-
mute, since conjugating Â−1Â = 1 by Â gives ÂÂ−1 = 1

as well. Therefore the self-obstructor invariants are zero. An
even simpler argument implies that the mutual-obstructor in-
variants are zero, since the support of patch operators L̂β,TP

j

and R̂α,TP
i is non-overlapping whenever j > i+K.

These arguments can be extended to show that taking tensor
products with a LTPS does not change the obstructor invari-
ants. Consider a tensor product H′

bndry = Hbndry ⊗HTP. Note
that Pauli operators on H′

bndry are equal to tensor products
of Pauli operators on the individual Hilbert spaces, i.e. σ̃′ =
σ̃⊗σTP. An operator σ̃′ on H′

bndry features a global constraint,∏
i σ̃

′
i ∝

GS
1, if and only if both

∏
i σ̃i ∝

GS
1 and

∏
i σ

TP
i = 1.

The tensor product structure implies that the commutation of
patch operators involving σ̃′ are equal to the product of the
commutation of patch operators involving σ̃′ and the commu-
tation of those involving σTP. The latter are zero by the argu-
ments above. Thus the obstructor invariants are unchanged by
the tensor product.

Generic boundary terminations.—Before proceeding, we
pause to note the arguments of this section imply that our
simple choice of boundary termination at iy ≥ 0 is in fact
quite generic. Specifically, consider instead an arbitrary lin-
ear boundary represented by the integers, (bx, by), where the
qudits contained in the bulk obey, bxix + byiy ≥ 0. By
transforming to coordinates, i′x = −byix + bxiy and i′y =

6 The patch operators can be finite instead of semi-infinite, as long as the
strings extend for a distance at least 2K away from the cut. In this case,
the strict equality in Eq. (30) implies that the string contains support only
within a region of width K about either of the endpoints. The support at
the endpoint far from the cut commutes with all operators near the cut due
to spatial locality.

bxix+byiy , we obtain a new stabilizer model with an enlarged
unit cell [now containingM(b2x+b

2
y) instead ofM stabilizers]

and the “simple” boundary condition, i′y ≥ 0. While the spe-
cific operator algebra of the jy ≥ 0 boundary may differ from
the iy ≥ 0 boundary, the structure of the constraints placed
upon it and the commutation relations of the patch operators
will remain identical since their properties are inherited from
the bulk topological order (as mentioned before, we prove this
explicitly in Appendix B).

These relations complete our characterization of the ob-
structor invariants of 2D translation invariant stabilizer models
in terms of the bulk topological order. In the following sec-
tion we will see that this characterization takes a particularly
simple, computable form within a polynomial formalism for
analyzing these models.

IV. POLYNOMIAL FORMALISM FOR BOUNDARIES AND
OBSTRUCTOR INVARIANTS

In this section, we utilize a mapping [57] between stabilizer
models and polynomials over finite fields to characterize the
obstructor invariant. This framework provides an alternate al-
gebraic perspective on the results of the previous section, and
will carry over naturally to higher-dimensional models in Sec-
tions V and VI.

We begin by reviewing the polynomial formalism (Sec-
tions IV A and IV B). In Section IV D we turn to the boundary
commutation relations, introduced in Section III D to charac-
terize the obstructor invariant and bulk anyon data. We show
that these correspond to simple derivatives in the polynomial
formalism. In Appendix B, we utilize this result to explicitly
compute the commutation relations for arbitrary translation-
invariant stabilizer models, and verify that they are indeed di-
rectly equal to the bulk mutual and self statistics. This com-
plements our pictorial arguments in the previous sections.

A. Review of the polynomial formalism

We consider translation-invariant stabilizer models on a D-
dimensional hypercubic lattice withM qudits of Hilbert space
dimension n per unit cell. We denote the number of stabilizers
per unit cell as T and again assume the stabilizers are geomet-
rically K-local.

To represent the Pauli operators of the system using poly-
nomials, first note that any Pauli operator, σ, can be uniquely
decomposed (up to an overall phase) as a product of single-
qudit Paulis, Xi,m and Zi,m:

σ =
⊗
i∈ZD

m∈{1,...,N}

(Zi,m)
ai,m (Xi,m)

bi,m . (31)

Here, i,m index the unit cell and sublattice of the single-qudit
Pauli operator, respectively, and the exponents, ai,m, bi,m,
lie in Zn. Using this decomposition, we can equivalently
represent the Pauli operator as a 2M -component vector,
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σ ∈ Zn[x1, . . . , xd, x̄1, . . . , x̄d]
⊗2M , of multivariate (Lau-

rent) polynomials over Zn, where x̄d ≡ x−1
d :

σ(x1, . . . , xD) =



∑
i ai,1x

i1
1 · · ·xiDD
...∑

i ai,Mx
i1
1 · · ·xiDD∑

i bi,1x
i1
1 · · ·xiDD
...∑

i bi,Mx
i1
1 · · ·xiDD


. (32)

In the future, we will suppress the dependence on xd,
σ(x1, . . . , xD) → σ, when clear from context. Here, the
mth component of σ is a polynomial in x1, . . . , xD with co-
efficients ai,m ∈ Zn (corresponding to Pauli Z operators),
and the (M + m)th component is a polynomial with coeffi-
cients bi,m ∈ Zn (corresponding to Pauli X operators). It
will often be convenient to expand these polynomials power-
by-power, in which case we denote σ =

∑
i[σ]i x

i1
1 · · ·xinn ,

where [σ]i ∈ (Zn)
⊗2M is a vector over Zn.

A number of elementary matrix operations are represented
easily within this formalism. For instance, translation of a
Pauli operator, σ → Tj [σ], by a lattice vector j corresponds
to multiplication of σ by the monomial, xj11 . . . xjDD . Inver-
sion about the site i = (0, . . . , 0) corresponds to exchanging
xd ↔ x̄d for all d = 1, . . . , D. Finally, multiplication of two
Pauli operators, σ1 and σ2, corresponds to addition of their
polynomial vectors, σ1 · σ2 ↔ σ1 + σ2.

We can also use these elementary operations to compute the
commutation of two Pauli operators,

σ1σ2 = exp

[
i
2π

n
θ(σ1, σ2)

]
· σ2σ1, (33)

Here, θ(σ̂1, σ̂2) ∈ Zn determines the overall phase gained
by commuting σ̂1 past σ̂2. In fact, the polynomial formalism
naturally computes the commutation of all translations of σ1,
Tj [σ1], with σ2. These are calculated via the following inner
product of polynomial vectors:

⟨σ1,σ2⟩ = σ†
1λNσ2, (34)

which we refer to as the commutation polynomial. Here, σ†

denotes a combination of matrix transposition and spatial in-
version applied to σ:

σ† ≡



∑
i ai,1x̄

i1
1 · · ·x−iD

D
...∑

i ai,M x̄
i1
1 · · ·x−iD

D∑
i bi,1x̄

i1
1 · · ·x−iD

D
...∑

i bi,M x̄
i1
1 · · ·x−iD

D



T

, (35)

and λN is the symplectic matrix:

λN =

(
0N×N 1N×N

−1N×N 0N×N

)
. (36)

The coefficients of the commutation polynomial correspond
to the desired commutators:

⟨σ1,σ2⟩ =
∑
j

θ(Tj [σ1], σ2) · xj11 . . . xjDD . (37)

We illuminate this correspondence with a simple example.
Consider the commutation polynomial of an Pauli X oper-
ator at the origin, σ1 = X0, with a Pauli Z operator at a
site i, σ2 = Zi (taking M = 1 for simplicity). These
are represented by polynomial vectors, σ1 = (1, 0)T and
σ2 = (0, xi11 · · ·xiDD )T , respectively. Their anti-commutation
polynomial is ⟨σ1,σ2⟩ = xi11 · · ·xiDD . This has only a sin-
gle non-zero term, indicating that the translation, Ti[σ̂1], anti-
commutes with σ̂2, while all other translations commute.

In what follows, it will be convenient to consider the com-
mutation relations within sets of multiple Pauli operators, e.g.
a set of T operators, {σ̂1, . . . , σ̂T }. We can represent such a
set by a polynomial matrix:

Σ = (σ1 · · ·σT ) (38)

where the tth column is equal to the polynomial vector corre-
sponding to σ̂t. The commutation relations between each pair
of elements in the set are now represented by an adjacency
matrix:

A = ⟨Σ,Σ⟩ , (39)

with entries, Aij = ⟨σi,σj⟩, equal to the pairwise commu-
tation polynomials. By definition, A is skew-Hermitian with
respect to the dagger operation.

A translation-invariant stabilizer model is specified by a set
of local stabilizer operators Σ. The stabilizers must mutu-
ally commute, i.e. A = ⟨Σ,Σ⟩ = 0. The set of linear com-
binations of stabilizer vectors generates a stabilizer module,
S = span (Σ) ∈ Z

2M
d [x1, . . . , xD]. We further assume the

set of local stabilizers Σ is complete, in the sense that ev-
ery local Pauli operator τ that commutes with all stabilizers,
⟨τ ,Σ⟩ = 0, is itself already contained in the stabilizer mod-
ule, τ ∈ S.

We can illustrate these concepts in the Z2 toric code. Each
lattice site contains m = 2 spins (the horizontal and vertical
edges), so the stabilizers are polynomial vectors with 2m = 4
indices. The bulk plaquette and vertex stabilizers [Eq. (2)]
take the form [57]:

σZ =

1 + x̄
1 + ȳ
0
0

 , σX =

 0
0

1 + y
1 + x

 , (40)

which for convenience we collect into the polynomial matrix,

Σ = (σZ ,σX). (41)

Here we replace x1, x2 → x, y for clarity. Recalling that the
polynomial coefficients are now binary, it is straightforward
to verify that all translations of the stabilizers mutually com-
mute, i.e. ⟨Σ,Σ⟩ = 0.
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B. Bulk conservation laws

We now address how bulk conservation laws appear in
the polynomial formalism. We restrict for now to two-
dimensions, and for simplicity we again only consider con-
servation laws that involve products of stabilizers over every
unit cell.

We begin in the toric code. The conservation law [Eq. (3)]
corresponds to the fact that the product of vertex operators
over all unit cells is equal to the identity, and similarly for the
plaquette operators. In the polynomial formalism, this takes
the form,∑

i,j

xiyjσZ(x, y) = 0,
∑
i,j

xiyjσX(x, y) = 0, (42)

where i, j are summed over the integers. This can be neatly
re-expressed using the following identity for infinite sums:∑

i

xi11 . . . x
iM
M · σ(x1, . . . , xM )

=
∑
i

xi11 . . . x
iM
M · σ(1, . . . , 1),

(43)

which is derived by expanding σ power-by-power and re-
indexing the sum7. The conservation laws [Eq. (42)] are thus
equivalent to the conditions that both σZ and σX have zeros
at (x, y) = (1, 1):

σZ(1, 1) = 0, σX(1, 1) = 0. (44)

This property is easily verified from Eq. (40) for both plaque-
tte and vertex operators.

In generic systems, it may be the case that only certain sub-
sets of the bulk stabilizers feature conservation laws. To this
end, we adopt a more general notation, in which each conser-
vation law is labelled by a vector, cα ∈ ZT

d , such that

Σ(1, 1) · cα = 0. (45)

Recall that T is number of stabilizers per unit cell, so cα en-
codes combinations of stabilizers that product to the identity
over the entire lattice. In the case of the toric code, we have the
following conservation laws for the three non-trivial anyons:

ce =

(
1
0

)
, cm =

(
0
1

)
, cf =

(
1
1

)
, (46)

We provide a more general algebraic formulation of conser-
vation laws in Section VI.

7 For example in 2D we have,
∑

ij x
iyjσZ(x, y) =∑

ijkl[σZ ]klx
i+kyj+l =

∑
ijkl[σZ ]klx

iyj =
∑

ij x
iyjσZ(1, 1),

where we re-index i, j → i− k, j − l in the third step.

C. Boundary operator algebra and constraints

We now turn to stabilizer models in the presence of open
boundary conditions. For concreteness, we again specify to
the toric code with a boundary at iy = 0 (Fig. 4). In the poly-
nomial formalism, this boundary entails truncating all terms
with negative powers of y: in effect, setting ȳ → 0 while
leaving y. We find the boundary operators [Eqs. (5,6)],

Σ̃ = (σ̃Z , σ̃X), (47)

with

σ̃Z = σZ

∣∣
ȳ→0

=

1 + x̄
1
0
0

 , σ̃X = ȳσX

∣∣
ȳ→0

=

0
0
1
0

 .

(48)

Note that the boundary operators are now described by single
variable polynomial vectors, Σ̃ = Σ̃(x), since the boundary
is one-dimensional. For more general models, we can system-
atically compute all allowed boundary operators by consider-
ing the truncation, ȳ → 0, of each y-translation of the bulk
stabilizers (i.e. σ̃j ≡ (ȳjσ)|ȳ→0 for j ∈ [0, . . . ,K − 1], see
Appendix B).

From Eqs. (47-48), we can compute the adjacency matrix
of the toric code boundary operators:

A = ⟨Σ̃, Σ̃⟩ =
(

0 1 + x
1 + x̄ 0

)
. (49)

The zero diagonal elements signify that boundary operators of
the same type commute amongst themselves, while the non-
zero off-diagonal elements signify that σ̃X operators anti-
commute with each of their neighboring σ̃Z operators (cor-
responding to translations of ix = 0 and ix = 1).

We now turn to the constraints placed on the boundary
Hilbert space by the bulk conservation laws. As in Eq. (8),
the product of all bulk operators that feature a conservation
law, cα, is equal to the product of all boundary operators cor-
responding to truncations of the given bulk operators. When
the bulk is in the ground state, this enforces8

∑
i

xiΣ̃(x) · cα =
GS

0. (50)

These constraints restrict the form of the boundary adja-
cency matrix. To see this, note that the product of boundary
operators in Eq. (50) necessarily commutes with every opera-
tor in the boundary Hilbert space (since the product of bound-
ary operators is equal to a product of bulk operators, each of

8 Formally, this can implemented by taking the quotient of the polynomial
ring, (Zn[x, x̄])⊗2M , by the elements,

∑
i x

icα/ However, we will not
need this formalism until Section VI.
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which by definition commutes with every boundary operator).
Therefore, we must have〈

Σ̃(x),
∑
i

xiΣ̃(x)cα

〉
=
∑
i

xiA(x)cα = 0. (51)

Using Eq. (43), this is equivalent to the condition,

A(1) · cα = 0, (52)

i.e. the vector, A(x) · cα, has a zero at x = 1. This property
is clearly obeyed on the toric code boundary.

D. Mutual- and self-obstructor invariants

We now turn to the obstructor invariants. With a modest
effort, we will show that the obstructor invariants are given
simply by derivatives of the adjacency matrix A(x).

We begin with the mutual-obstructor invariant (right panel
of Fig. 6). First, let us express the patch operators Lα

j and Rβ
i

algebraically,

Lα =

i0∑
i=−∞

xiΣ̃cα, Rα =

∞∑
i=1

xiΣ̃cα, (53)

For simplicity, we have set the right endpoint to 1 and the left
end point to an integer i0 > K.

The commutation of the patch operators can be computed
as

⟨Rα,Lβ⟩ =

〈 ∞∑
i=1

xiΣ̃cα,

i0∑
j=−∞

xjΣ̃cβ

〉

=

∞∑
i=1

∞∑
j=−i0

x−i−jc†αAcβ

= xi0
∞∑
k=1

k · x−kc†αAcβ ,

(54)

where in the final line we use the identity,∑∞
i=1

∑∞
j=0 x

−i−j =
∑∞

k=1 k · x−k. The mutual-obstructor
invariant corresponds to the x0-component of this inner
product (since this corresponds to zero relative translation
between the strings). We can compute this by expanding
power-by-power, A(x) =

∑
i x

i[A]i, and restricting to the
zero-component,

b̃(α, β) =

[
xi0

∞∑
k=0

k · x−kc†αAcβ

]
0

= c†α

( ∞∑
k=0

k [A]k−i0

)
cβ

= c†α

( ∞∑
k=−∞

k [A]k

)
cβ .

(55)

In the final step we extend the summation to negative infin-
ity, since [A]k−i0 is only non-zero for k − i0 > K, and use
Eq. (52), in the form A(1)cβ =

∑
i[A]icβ = 0, to shift the

summation from k → k + i0.
Now, we notice that the above sum closely resembles the

derivative of the adjacency matrix with respect to x. Specifi-
cally, the Hasse derivative of a polynomial is defined power-
by-power as

Dx[x
k] = kxk−1. (56)

Observing Eq. (55), we see that the commutation of bound-
ary strings is equal to the derivative of the adjacency matrix
evaluated at x = 1,

b̃(α, β) = Dx[c
†
αAcβ ](1). (57)

As a simple example, applying this to the toric code shows
(taking cZ and cX as basis vectors) gives

b̃ = Dx[A](1) =

(
0 1
1 0

)
. (58)

The off-diagonal elements signify that the e and m patch op-
erators mutually anti-commute.

The self-obstructor invariant can be calculated similarly.
Consider the same commutation as above with i0 = 0 and
β = α. Taking the x0-component, we find

q̃(α) =

[ ∞∑
k=1

k · x−kc†αAcα

]
0

=

∞∑
k=1

k ·
[
c†αAcα

]
k
.

(59)

Unlike the mutual-obstructor invariant, the self-obstructor in-
variant involves only the positive “half” (i.e. powers k > 0) of
the polynomial aα(x) ≡ [c†αAcα](x). We can re-express this
using the following two properties: first, aα(x) = −aα(x̄),
since this simply flips the ordering of the commutator, and
second, [aα]0 = 0, since any operator commutes with it-
self. Together, these allow one to decompose aα(x) as the
sum of a positive part, a+α (x), and its Hermitian conjugate,
(a+α )

†(x) = −a+α (x̄),

aα(x) ≡ [c†αAcα](x) = a+α (x)− a+α (x̄). (60)

For example, one could define a+α to contain only the positive
powers within aα, a+α (x) =

∑∞
k=1[aα]kx

k, while its conju-
gate contains the negative powers. The self-obstructor invari-
ant is equal to the derivative of the positive part,

q̃(α) =

∞∑
k=1

k ·
[
a+α (x)− a+α (x̄)

]
k

=

∞∑
k=1

k ·
([
a+α
]
k
−
[
a+α
]
−k

)
=

∞∑
k=−∞

k ·
[
a+α (x)

]
k

= Dx

[
a+α
]
(1).

(61)
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This result holds regardless of the particular decomposition,
i.e. for any valid choice of a+α (x). Suppose we had chosen
a different decomposition aα(x) = a+α (x)

′ − a+α (x̄)
′, then

such a choice can only differ up to a symmetric polynomial,
so a+α

′ − a+α =
∑

n sn(x
n + x̄n) for some coefficients sn.

However, Dx[x
n+ x̄n]x=1 = [nxn−1−nx̄n+1]x=1 = 0, thus

Dx[a
+
α
′
](1) = Dx[a

+
α ](1).

We have shown that the obstructor invariants can be com-
puted simply as derivatives of the adjacency matrix on the
boundary. We can now provide an algebraic perspective for
why the invariants obstruct a local tensor product realization,
by showing that in a LTPS these derivatives must always van-
ish. Consider a 1D LTPS with local operators, ΣTP. Suppose
that these operators obey a set of conservation laws, cα,∑

i

xi ·ΣTP(x)cα = 0. (62)

Using Eq. (43), the conservation law is equivalent to the con-
dition ΣTP(1)cα = 0. Now, this implies that Σ(x)cα contains
a factor of x− 1. That is, we can write

ΣTP(x)cα = (x− 1)τα(x), (63)

for some polynomial vector τα. However, this implies that
inner products of conservation laws with the adjacency matrix,
ATP = ⟨ΣTP,ΣTP⟩, contain two factors of x− 1,

c†αATPcβ = (x− 1)(x̄− 1) ⟨τα, τβ⟩ (64)

and thus have derivative zero at x = 1,

Dx[c
†
αATPcβ ](1) = 0. (65)

Hence, any non-zero mutual-obstructor invariant signifies that
the boundary is not a LTPS.

A similar argument applies to the self-obstructor invariant.
In a 1D LTPS, we have

c†αATPcα = (x− 1)(x̄− 1) ⟨τα, τα⟩
= (x− 1)(x̄− 1)

(
t+α (x)− t+α (x̄)

) (66)

where we decompose ⟨τα, τα⟩ = t+α (x) − t+α (x̄), similar to
Eq. (60). The positive part of the commutation thus also has
derivative zero:

Dx[(x− 1)(x̄− 1)t+α ](1) = 0. (67)

Hence, any non-zero self-obstructor invariant signifies that the
boundary is not a LTPS.

In Appendix C, we go further and show that the polynomi-
als [c†αAcβ ](x) are in fact fully characterized by the values of
the obstructor invariants, up to tensor products with stabilizers
in a 1D LTPS.

V. BOUNDARIES OF TYPE-I FRACTON MODELS

Stabilizer codes in higher dimensions can realize a vastly
greater variety of topological phases compared to two dimen-
sions. We find that conventional topological orders in higher

dimensions, such as higher-dimensional toric codes and their
relatives, display a qualitatively similar bulk-boundary corre-
spondence as in two-dimensional topological orders. Thus,
we relegate their analysis to Appendix E for interested read-
ers.

In the remainder of the work, we instead focus on new bulk-
boundary phenomena that occur in three-dimensional fracton
orders. In this section, we will focus on Type-I fracton orders,
specifying for concreteness to the X-Cube model. We will
show that the bulk-boundary correspondence of Type-I fracton
boundaries depends on the orientation of the boundary con-
sidered, in stark contrast to our results on conventional topo-
logical orders. We construct obstructor invariants for fracton
models, and show that they allow one to distinguish the X-
Cube boundary from both a LTPS, and, more generally, the
boundary of any stack of 2D topological orders. In the fol-
lowing Section VI, we extend this analysis to fracton models
with fractal conservation laws, including Type-II fracton or-
ders such as Haah’s code.

A. Review of X-Cube model

The Hamiltonian of the X-Cube model,

HTC = −J
∑
i

σZ
i − J

∑
i

∑
r=x,y,z

σX,r
(i) , (68)

consists of a 12-spin cube stabilizer,

σZ
i =Zi,xZi−ŷ,xZi−ẑ,xZi−ŷ−ẑ,x

Zi,yZi−x̂,yZi−ẑ,yZi−ẑ−x̂,y

Zi,zZi−x̂,zZi−ŷ,zZi−x̂−ŷ,z,

(69)

and three 4-spin vertex stabilizers,

σX,x
i =Xi,yXi,zXi+ŷ,yXi+ẑ,z

σX,y
i =Xi,zXi,xXi+ẑ,zXi+x̂,x

σX,z
i =Xi,xXi,yXi+x̂,xXi+ŷ,y,

(70)

FIG. 7. Cube (blue) and vertex (red) stabilizers of the X-Cube model.
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FIG. 8. Bulk conservation laws over the xy-,yz-, and zx-planes terminate to form linear constraints on the boundary of the X-Cube model.
(a) The (001)-boundary has two constraints, from the yz- and zx-planes. The xy−plane does not contribute a constraint, since it is parallel
to the boundary. (b) The (110)-boundary similarly has only two constraints. The yz- and zx-planes terminate in an identical constraint (up to
tensor products with stacks of 2D toric codes, see text), while the xy-plane forms a second independent constraint. (c) The (111)-boundary
has three independent constraints in the xy-,yz-, and zx-planes.

as depicted in Fig. 7. In the polynomial formalism, the stabi-
lizers can be written as

Σ =


(1 + ȳ)(1 + z̄) 0 0
(1 + x̄)(1 + z̄) 0 0
(1 + x̄)(1 + ȳ) 0 0

0 1 + x 0
0 0 1 + y
0 1 + z 1 + z


=
(
σZ σX,y σX,x

)
,

(71)

where we use the fact that the three vertex operators product
to the identity,

σX,x + σX,y + σX,z = 0, (72)

to neglect σX,z .
The conservation laws of the X-Cube model correspond to

products of bulk stabilizers over the xy-, yz-, and zx-planes.
The cube stabilizer has conservation laws in all three orienta-
tions,∑

j,k

yjzkσZ =
∑
i,k

xizkσZ =
∑
i,j

xiyjσZ = 0 (73)

while the vertex stabilizers have conservation laws in one ori-
entation each,∑

j,k

yjzkσX,x =
∑
i,k

xizkσX,y =
∑
i,j

xiyjσX,z = 0. (74)

Here, each sum runs from negative to positive infinity.
At a formal level, the story of quasiparticles in the X-Cube

model proceeds similarly to the toric code, even though the
behavior of the quasiparticles differs greatly. The X-Cube
model has e-quasiparticles that violate the cube stabilizers
σZ . The conservation laws in Eq. (73) enforce that the parity
of e-quasiparticles in each plane of the lattice is conserved.
These conservation laws imply that a lone e-quasiparticle
is fractonic: it is not free to move in any direction, since
any movement will change the parity in at least one plane.

The model also has mz-quasiparticles that violate the ver-
tex stabilizers σX,y and σX,x (and similar for mx and my-
quasiparticles). The conservation laws Eq. (74) enforce con-
servation of the parity of mz-quasiparticles in the xz- and yz-
planes. This implies that a lone mz-quasiparticle is a lineon
that is free to move only in the z-direction. An mx- and my-
quasiparticle can fuse to form an mz-quasiparticle (and simi-
lar for other permutations).

As in the toric code, we can use the conservation laws to
formulate exchange operations for the quasiparticles. Con-
sider the product of all cube stabilizers over a finite rectan-
gular prism. The conservation laws, Eq. (73), imply that the
resulting operator is the identity within the bulk of the prism
as well as on each face of the prism. This “cage” operator is
non-identity only along the edges of the prism, which can be
viewed as transporting lineons along the edge (at each corner,
an mx- and my-lineon fuse to form an mz-lineon). Mean-
while, an analogous product of σX,y vertex operators is the
identity within the bulk of the prism as well as on the xz-face
[observing Eq. (74)]. The resulting operator is non-identity
along four of the faces, which can be viewed as transport-
ing pairs of distant fractons around a closed loop. The cage
and net operators allow us to formulate mutual statistics be-
tween the fractons and lineons. In particular, we can consider
transporting a lineon around a fracton excitation via the cage
operator, which results in a minus sign being applied to the
many-body wavefunction.

Recent work has also introduced a “windmill” self-
exchange operation for the fracton quasiparticles [96]. This
exchange process gives trivial statistics for e quasiparticle in
the X-Cube model, but can be non-zero for bound states of e
and m particles, as well as in other fracton models. The pro-
cess involves exchanging two triplets of fractons via a third
triplet of locations, in a manner similar to the self statistics
exchange process in two-dimensional topological orders.
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FIG. 9. (Left) Truncated operators at the (001)-boundary of X-cube. (Right) Frustration graph and constraints of the boundary operators. Each
boundary operator participates in a linear constraint in both the x- and y-directions.

B. Boundary operator algebra and subsystem constraints

We now turn to the boundary Hilbert space of the X-Cube
model. We will show that a central feature of the bound-
ary Hilbert space is that the planar conservation laws of the
bulk Hamiltonian terminate as linear subsystem constraints
on the boundary (Fig. 8). Thus, much as the boundary of
the toric code can be thought of as the symmetric sector of
a one-dimensional spin chain, the boundary of the X-Cube
model can be thought of as the subsystem-symmetric sector
of a two-dimensional spin lattice. Intriguingly however, the
precise subsystem constraints depend on the orientation of the
boundary chosen. In what follows, we explore this in (001)-,
(110)-, and (111)-boundaries.

(001)-boundary—The boundary operators of the (001)-
boundary are shown in Fig. 9. They can be derived alge-
braically as in the previous section, by translating each sta-
bilizer such that it traverses the boundary and setting powers
of z̄ to zero. This gives:

Σ̃ =


1 + ȳ 0
1 + x̄ 0

(1 + x̄)(1 + ȳ) 0
0 0
0 0
0 1

 =
(
σ̃Z σ̃X

)
. (75)

Note that the two bulk operators σX,y and σX,x give rise
to the same boundary operator since their product, σX,z , re-
mains a bulk stabilizer. Eliminating this redundancy leaves us
with two independent local boundary operators, as above. The
adjacency matrix of the boundary operators is

A(x, y) =

(
0 (1 + x)(1 + y)

(1 + x̄)(1 + ȳ) 0

)
. (76)

TheX- andZ-boundary operators anti-commute in a checker-
board pattern as shown in Fig. 9. The algebra matches that of
the subsystem-symmetric subspace of the Xu-Moore (plaque-
tte Ising) model [98].

The bulk conservation laws of the X-Cube model
[Eqs. (73,74)] enforce linear subsystem constraints on the

boundary Hilbert space (Fig. 8). In the polynomial formal-
ism, these are:

∑
i

∞∑
k=0

xizkσZ =
∑
i

xiσ̃Z =
GS

0, (77)

∑
j

∞∑
k=0

yizkσZ =
∑
j

yjσ̃Z =
GS

0, (78)

∑
i

∞∑
k=0

xizkσX,y =
∑
i

xiσ̃X =
GS

0, (79)

∑
j

∞∑
k=0

yizkσX,x =
∑
j

yjσ̃X =
GS

0. (80)

Each boundary operator is involved in two constraints, one in
each of the x- and y-directions. Note that there is no con-
straint arising from the bulk xy-conservation laws, since they
run parallel to the (001)-boundary. As in Section IV C, the
constraints must commute with all local boundary operators.
The analogue of Eq. (52) becomes

A(x, 1) = A(1, y) = 0. (81)

This equation contains four constraints, for each combination
of a basis vector cX , cZ and a direction x, y.

(110)-boundary—Unlike the (001)-boundary, all three con-
servation laws of the bulk topological order terminate non-
trivially on the (110)-boundary. However, as depicted in
Fig. 8, the conservation laws in the xz- and yz-planes ter-
minate in parallel lines, along the z-direction on the (110)-
boundary. Thus, it is not immediately clear whether these ter-
minations give rise to independent or redundant constraints.
In what follows, we show that, to a large extent, the latter is
the case. Specifically, we find that the (110)-boundary oper-
ator algebra is equivalent to the tensor product of the (001)-
boundary operator algebra and the boundary operator algebra
of a stack of toric codes along the (110)-direction.

To calculate the truncated boundary operators, we first de-
fine the new coordinate w = xȳ, which runs parallel to the
(110)-boundary. Following our usual procedure, the truncated
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boundary operators are

Σ̃ =



w̄(1 + z̄) 0 0 0
1 + z̄ 0 0 0
1 + w̄ 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 + z 1 + z
0 0 0 0


. (82)

The eight rows correspond to four spins: the first three corre-
spond to the x-, y-, and z-bonds on sites of the form wizj , the
fourth corresponds to z-bonds on sites along x−1wizj . The
first two columns correspond to two different truncations of
the cube stabilizer σZ , one acting on seven spins and one act-
ing on only a single spin. The second two columns correspond
to truncations of the vertex stabilizers σX,x and σX,y .

The constraints on the boundary Hilbert space are as
follows. Along the z-direction, we have constraints for
c = (1, w̄, 0, 0)T , (1, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T

and all linear combinations thereof. Meanwhile,
along the w-direction we have constraints for
c = (1, 1, 0, 0)T , (0, 0, 1, 1)T .

To diagnose the structure of the boundary Hilbert space, we
analyze the matrix elements of the commutator A under the
constraints. From the above description, we see that there are
two vectors with constraints in both the z- and w-directions,
cZ = (1, 1, 0, 0)T and cX = (0, 0, 1, 1)T . Each constraint
has zero commutator with itself, and the two have a mutual
commutator cZAcX = (1 + w)(1 + z). This is an identical
commutation structure as the (001)-boundary.

We now turn to the vectors c that only have constraints in
the z-direction. We can form a basis for these vectors by
defining czZ = (1, w̄, 0, 0)T and czX = (0, 0, 1, 0)T . Both
of these entirely commute with the constraints, cZ and cX , in
the previous paragraph. They also both have zero commuta-
tor with themselves. Their mutual commutator is czZAczX =
(1+w)(1+z). This has a non-zero first derivative correspond-
ing to the z-direction constraint, Dz[c

z
ZAczX ](z = 1) = 1, as

would be found at the boundary of a stack of toric codes. In-
deed, the same constraints and commutator can be achieved at
the boundary of a stack of toric codes, by ‘pairing’ X oper-
ators in adjacent stacks (i.e. taking cX → (1 + w)cX where
here cX denotes the usual boundary operator in a toric code
boundary along the z-direction). We conclude that the (110)-
boundary is equivalent to the (001)-boundary tensored with
the boundary of a stack of toric codes.

(111)-boundary—The edges of a cubic lattice naturally
form vertices of a Kagome lattice on the (111)-boundary.
The corresponding truncated boundary operators are shown in
Fig. 10. As in the bulk, it is convenient to label the boundary
spins by the cubic lattice vertex that they extend from. This
leads us to group each trio of spins on upward triangles on the
Kagome lattice. The resultant lattice is triangular with three
spins per unit cell (Fig. 10).

To derive the boundary operators algebraically, we define
the new monomials x1 = zȳ, x2 = xz̄, x3 = yx̄. Note
that the third monomial is redundant with the first two since

x1x2x3 = 1. Translations by any of these monomials are par-
allel to the (111)-boundary. We can therefore use x1 and x2 to
parameterize the boundary operators, while the independent
monomial z parameterizes translations into the bulk. Substi-
tuting these into Eq. (71), we can rewrite the bulk stabilizers
as

Σ =


(x1 + z)(1 + z) 0 0
(x̄2 + z)(1 + z) 0 0
(x̄2 + z)(x1 + z) 0 0

0 1 + x2z 0
0 0 1 + x̄1z
0 1 + z 1 + z


=
(
σZ σX,y σX,x

)
.

(83)

The boundary operators are obtained by taking various
translations of the bulk stabilizers, and setting negative pow-
ers of z to zero. This gives two boundary operators per unit
cell for the cube stabilizer (corresponding to truncations of
z−1σZ and z−2σZ), and a single boundary operator for each
vertex stabilizer (corresponding to z−1σX,α):

Σ̃ =


1 z + x1 + 1 0 0
1 z + x̄2 + 1 0 0
1 z + x1 + x̄2 0 0
0 0 x2 0
0 0 0 x̄1
0 0 1 1


=
(
σ̃Z,1 σ̃Z,2 σ̃X,y σ̃X,x

)
.

(84)

This is shown in Fig. 10. It is important to note that in the
boundary theory, the z variable should be understand as an
extension of the unit cell, and so shifts of the above operators
by powers of z are not physical. For example, the first order
in z terms correspond to spins lying one layer “into the bulk”
in Fig. 10. An alternate way to denote this would be to elim-
inate the z variable entirely and introduce new row vectors
corresponding to such terms. In the current notation, the adja-
cency matrix of the boundary operators is obtained by taking
the z0-component of the inner product ⟨Σ̃, Σ̃⟩, which gives

A =

 0 0 1 + x2 1 + x̄1
0 0 x̄1(1 + x2) x2(1 + x̄1)

1 + x̄2 x1(1 + x̄2) 0 0
1 + x1 x̄2(1 + x1) 0 0

 .

(85)

The bulk conservation laws of the X-Cube model termi-
nate into three orientations of line constraints on the (111)-
boundary [Fig. 8(c) and Fig. 10]. To derive these constraints
explicitly, let us first re-write the bulk conservation laws in
the x1, x2, z coordinates. Focusing on the cube stabilizers, we
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FIG. 10. (Top left) Truncated operators of the (111)-boundary of the X-cube model on the Kagome lattice. (Top right) The same operators on
a triangular lattice with three sites per unit cell. Two out of the three coordinates, x1 = zȳ, x2 = xz̄, x3 = yx̄, span the boundary. (Bottom)
Commutation graph and constraints of the (111)-boundary. Each operator participates in three constraints, in the x1-, x2-, and x3-directions.

have: ∑
i,j

xiyj · σZ =
∑
i,j

zi+jxi2x̄
j
1 · σZ = 0

∑
i,j

yizj · σZ =
∑
i,j

zi+j x̄i1 · σZ = 0

∑
i,j

zixj · σZ =
∑
i,j

zi+jxj2 · σZ = 0.

(86)

The termination of the conservation laws on the bound-
ary involves terms σ̃Z,1, σ̃Z,2, which correspond to pow-
ers z−1, z−2 respectively. Isolating such terms, we find the
boundary constraints∑

i

xi1 · (σ̃Z,1 + σ̃Z,2) ≡
∑
i

xi1 · (Σ̃ · cZ,1) =
GS

0∑
i

xi2 · (σ̃Z,1 + x2σ̃Z,2) ≡
∑
i

xi2 · (Σ̃ · cZ,2) =
GS

0∑
i

xi3 · (σ̃Z,1 + x1σ̃Z,2) ≡
∑
i

xi3 · (Σ̃ · cZ,3) =
GS

0,

(87)

where we define the vectors c̃Z,1 = (1, 1, 0, 0)T , c̃Z,2 =
(1, x2, 0, 0)

T , c̃Z,3 = (1, x1, 0, 0)
T to compactify our nota-

tion. Performing a similar procedure for the vertex stabilizers
gives: ∑

i

xi1 · σX,x ≡
∑
i

xi1 · (Σ̃ · cX,1) =
GS

0∑
i

xi2 · σX,y ≡
∑
i

xi2 · (Σ̃ · cX,2) =
GS

0∑
i

xi3 · (σX,x + σX,y) ≡
∑
i

xi3 · (Σ̃ · cX,3) =
GS

0.

(88)

for c̃X,1 = (0, 0, 0, 1)T , c̃X,2 = (0, 0, 1, 0)T , c̃Z,3 =
(0, 0, 1, 1)T . Each local boundary operator is thus involved in
three constraints, one in each of the x1-, x2- and x3-directions.
The constraints must again commute with all local boundary
operators, which enforces:

A(1, x2) · c̃P,1 = 0

A(x1, 1) · c̃P,2 = 0

A(x1, x̄1) · c̃P,3 = 0

(89)

for P = {X,Z}. Note that the final expression corresponds
to setting x3 = x̄1x̄2 = 1.

C. Patch operators and obstructor invariants

We now turn to the obstructor invariants of the X-Cube
boundaries. We begin with the (001)-boundary, where we in-
troduce rectangular patch operators that generalize the string-
like patch operators from the toric code boundary. From these,
we define intrinsically-two-dimensional mutual-obstructor in-
variants, and relate them to the cage-net mutual statistics of
the bulk fracton order [99]. The (110)-boundary displays
similar features, owing to its similar subsystem symmetry
constraints. However, we do not find any intrinsically-two-
dimensional self -obstructor invariant on the (001)- or (110)-
boundaries. This changes on the (111)-boundary. Here,
we introduce hexagonal patch operators whose commutation
gives rise to a self-obstructor invariant that is inherited from
the “windmill” self statistics of the bulk fracton quasiparti-
cles [96].

(001)-boundary—We begin with (001)-boundary.
Let us first observe that the (001)-boundary operator alge-

bra (Fig. 9) already contains within it the same patch opera-
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FIG. 11. Patch operators and the mutual-obstructor invariant on the (001)-boundary of the X-Cube model. (a) The patch operator can be
viewed either as the product of x-oriented line constraints along the y-direction (left), or as the product of y-oriented line constraints along
the x-direction (right). This implies that the patch operator commutes with all boundary operators except at its corners (red circles). (b) The
mutual-obstructor invariant is given by the commutation of overlapping rectangular patch operators. (c) By multiplying the patch operators
with bulk conservation laws, the mutual-obstructor invariant is found to equal the cage-net statistics of bulk quasiparticles.

tor commutators as we saw on the toric code boundary. In-
deed, viewing Fig. 9, if we restrict our attention to two adja-
cent lines of X- and Z-boundary operators (in either the x- or
y-direction), we have an identical boundary operator algebra
as in the toric code boundary. Applying our previous argu-
ments, we have that the (001)-boundary Hilbert space is not a
1D local tensor product space.

In the remainder of this Section, we will show a stronger
statement, namely that X-Cube boundary cannot be written
as a tensor product of the boundary Hilbert spaces of two-
dimensional toric codes. To do so, we introduce the rectan-
gular patch operators shown in Fig. 11. The two patches, Q̂X

and Q̂Z , are formed from products of σ̃X and σ̃Z boundary
operators, respectively. As shown in Fig. 11(a), the patch op-
erator can be equivalently viewed as either a product of line
constraints in the x- or the y-direction. Since the line con-
straint segments commute with all boundary operators except
at their endpoints, this equivalence implies that the rectangular
patch operator commutes with all boundary operators except
at its four corners.

We define a “rectangular” mutual-obstructor invariant as
the commutator of the two patch operators:

exp

(
2πi

d
b̃r(Z,X)

)
= Q̂ZQ̂XQ̂

†
ZQ̂

†
X . (90)

Note that any non-trivial commutation indicates that the
boundary cannot be realized as a local tensor product space,
by similar arguments as in Section II. We calculate the com-
mutation in the polynomial formalism, using the same manip-
ulations as in Eqs. (54,55). Taking the corners of the patch
operators to be separated by (i0, j0) in the xy-plane, we have

⟨QZ ,QX⟩ =

〈 ∞∑
i=1

∞∑
j=1

xiyjΣ̃cZ ,

i0∑
i′=−∞

j0∑
j′=−∞

xi
′
yj

′
Σ̃cX

〉

=

∞∑
i=1

∞∑
i′=−i0

∞∑
j=1

∞∑
j′=−j0

x−i−i′y−j−j′c†ZAcX

= xi0yj0
∞∑
k=1

∞∑
l=1

k · l · x−ky−lc†ZAcX .

(91)

Taking the x0y0 component and assuming i0, j0 > K, the

mutual-obstructor invariant is equal to a double derivative
over x and y evaluated at (x, y) = (1, 1),

b̃r(Z,X) =

[
xi0yj0

∞∑
k=0

∞∑
l=0

k · l · ·x−ky−lc†αAcβ

]
0,0

= c†α

( ∞∑
k=−∞

∞∑
l=−∞

k · l · [A]k,l

)
cα,

= Dx

[
Dy

[
c†αAcβ

]]
(1, 1).

(92)

In the X-Cube model we have c†ZAcX = (1+x)(1+ y), and
thus

b̃r(Z,X) = Dx

[
Dy

[
c†ZAcX

]]
(1, 1) = 1. (93)

i.e. the patch operators anti-commute.
As in the toric code, we can relate the mutual-obstructor

invariant to the bulk quasiparticle statistics. Specifically, re-
call that the net operator in the bulk model was formed by a
product of cube stabilizers σZ over a rectangular prism. The
termination of such a prism on the boundary is equal to the
product of σ̃Z operators over a rectangular region, i.e. the
patch operator Q̂Z . Similarly, a cage operator formed from
either σX,x or σX,y stabilizers in the bulk terminates to the
patch operator Q̂X , formed of σ̃X operators, on the bound-
ary. As shown in Fig. 11, by multiplying the respective patch

FIG. 12. Two models that display the same constraints as the X-
Cube (001)-boundary, but with different adjacency matrices and ob-
structor invariants [Fig. 13(d-e)]. (a) Stacked xz-toric codes with
‘paired’ operators in the y-direction. The paired operators product to
the identity in the x-direction due to the bulk topological order, and
in the y-direction as a result of the pairing. (b) A 2D local tensor
product space with ‘quadrupled’ operators. The operators product to
the identity in the x- and y-directions as a result of the quadrupling.
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FIG. 13. Schematic of the (001)-boundary commutator, c†ZAcX , in various three-dimensional models. A line of zeros of multiplicity 1
(single lines) corresponds to a linear boundary constraint arising from the bulk topological order. A line of multiplicity 2 (double lines) can
arise in a LTPS. The lack of a LTPS is detected by a non-zero first derivative perpendicular to the line (single arrow). The lack of stacked
toric codes is detected by a non-zero second derivative at the intersection of two constraints that involve the same operator (double arrows).
(a) The X-Cube model has zeros of multiplicity 1 along x = 1 and y = 1, and a non-zero double derivative at x = y = 1. (b) A stack of
yz-toric codes has zeros only along y = 1. (c) A tensor product of yz-plane and xz-plane toric codes has zeros along x = 1 and y = 1, but
for different operators. (d) A stack of yz-toric codes with paired operators [Fig. 12(a)] has zeros of multiplicity 2 along x = 1. (e) A LTPS
with quadrupled operators [Fig. 12(b)] has zeros of multiplicity 2 along x = 1 and y = 1.

operators with cage and net operators we can deform them
into the bulk. By doing so, we see that commutation of the
patch operators is equal to the cage-net statistics described in
the previous section.

We can also show that the commutation of patch opera-
tors is invariant upon taking tensor products of the bound-
ary Hilbert space with 2D toric code boundaries. For exam-
ple, consider boundary operators txα associated with a toric
code(s) in the xz-plane and tyα associated with a toric code(s)
in the yz-plane. We can form patch operators that involve
txα, tyα by performing the operator multiplication, cα →
cα + (y − 1)txα + (x − 1)tyα. Note that we need to mul-
tiply the x-oriented toric code operators by (y − 1) in or-
der for them to product to the identity in both the x- and y-
direction, which is required so that the patch operators prod-
uct to the identity in the bulk ground state (and similar for
the y-oriented toric code operators). Performing a similar
procedure for β, the patch operator commutation becomes
b̃r(α, β) → b̃r(α, β)+Dx[Dy[(y−1)(ȳ−1)⟨txα, txβ⟩]](1, 1)+
Dx[Dy[(x − 1)(x̄ − 1)⟨tyα, t

y
β⟩]](1, 1). The duplicate factors

of (y − 1) in the second term cause it to evaluate to zero,
and similar for the factors of (x − 1) in the third term. The
commutation of the patch operators b̃r(α, β) is therefore un-
changed. This implies that the X-Cube boundary cannot be
written as a tensor product of toric code boundaries, since any
tensor product would have trivial commutation (Fig. 12). We
further summarize the obstructor invariants that appear in var-
ious boundaries in Fig. 13.

It is natural to wonder whether there is a self-obstructor in-
variant for the X-Cube patch operators. The most obvious
candidate would be the commutation of two patch operators
that touch at a single point, and are formed from the same
boundary constraint α. Let us take the two patch operators to
lie in the second and fourth quadrants of the xy-plane (i.e. the
upper left and lower right quadrants, respectively). We can
perform algebraic manipulations identical to Eq. (59) to find
that the commutator, q̃24r (α), is equal to:

q̃24r (α) =

∞∑
k=1

∞∑
l=1

k · l ·
[
c†αAcα

]
k,l
. (94)

We can also consider the analogous commutator of the first
and third quadrants,

q̃13r (α) =

∞∑
k=1

0∑
l=−∞

k · l ·
[
c†αAcα

]
k,l
. (95)

In the X-Cube model we have q̃24r (α) = 1, q̃13r (α) = 0 for
cα = (1, 1).

However, unlike the mutual-obstructor invariant [Eq. (91)],
these quantities are not invariant upon taking tensor prod-
ucts with toric code boundaries. In particular, consider the
same scenario as above and set txα = (1, 1) and tyα = (0, 0),
i.e. we fuse the given conservation law with a fermion oper-
ator from the x-oriented toric code and nothing from the y-
oriented toric code. This adds a term (x − 1)(x̄ − 1)(y −
1) to c†αAcα and thus modifies the self commutators via
q̃24r (α) → q̃24r (α) + 1, q̃13r (α) → q̃13r (α) + 1. Meanwhile,
setting txα = (0, 0) and tyα = (1, 1) instead gives q̃24r (α) →
q̃24r (α) + 1, q̃13r (α) → q̃13r (α) − 1. Sequences of these two
moves can therefore adjust q̃24r , q̃

13
r to take any pair of val-

ues that conserve the parity q̃24r + q̃13r mod 2. However, even
this parity is not entirely invariant. For example, consider tak-
ing a tensor product with a Z2n-toric code (where the origi-
nal model is over Zn). The original patch commutators are
promoted to q̃24r , q̃

13
r → 2q̃24r , 2q̃

13
r in Z2n. These are even

over Z2n and thus can be reduced to zero via toric code tensor
products.

(111)-boundary—We now turn to the (111)-boundary, and
introduce a new self-obstructor invariant related to the wind-
mill statistics of bulk fractons. We consider hexagonal patch
operators as shown in Fig. 14(a). Similar to the rectangular
patch operators on the (001)-boundary, the hexagonal patch
operators can be written as products of finite strings of the
boundary constraints. One of way doing so is depicted in
Fig. 14(a). Another way of doing so would be to eliminate the
line constraint in each triangular region of Fig. 14(a), and ex-
tend the line constraints in the trapezoidal regions to run over
the two adjacent triangles instead. In this case, each triangle
consists of a product of two constraints from its neighboring
trapezoid. This product is equal to the single constraint shown
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FIG. 14. Hexagonal patch operators and the self-obstructor invariant on the (111)-boundary of the X-Cube model. (a) The hexagonal patch
operator is formed from the product of line constraints in all three directions, as shown. It commutes with all boundary operators except at
its corners (red circles). (b) The self-obstructor invariant is given by the threefold commutator of the patch operators Â, B̂, Ĉ, arranged as
shown. Here the colors denote the different patch operators which each involve the same boundary constraint (as opposed to previous figures,
where colors denoted different boundary constraints). (c) By multiplying the patch operators with bulk conservation laws, the self-obstructor
invariant is found to equal the windmill statistics of bulk fracton quasiparticles. This can be viewed as an exchange process where the 5 red
quasiparticles are exchanged with the 5 blue quasiparticles through the 5 intermediate locations denoted by open circles.

in the triangles in Fig. 14(a), since σ̃X,x + σ̃X,y + σ̃X,z = 0.
Since the line constraints commute with all boundary oper-
ators except at their end, these two pictures imply that the
hexagonal patch operator commutes with all boundary opera-
tors except those that overlap with its six vertices.

To formulate the self-obstructor invariant, we consider
three hexagonal patch operators, Â, B̂, Ĉ, arranged as in
Fig. 14(b). Each pair of patch operators share exactly one
vertex. Moreover, the product of any pair of patch operators
is proportional to a boundary constraint near the shared vertex
(i.e. the product commutes with all boundary operators near
the vertex). We define the “hexagonal” self-obstructor invari-
ant as the threefold commutator of the patch operators,

exp

(
2πi

d
q̃h(X)

)
= ÂB̂ĈÂ†B̂†Ĉ†. (96)

As for previous obstructor invariants, the hexagonal self-
obstructor invariant is zero whenever the boundary Hilbert is
a LTPS. To see this, note that in a LTPS the hexagonal patch
operators can be written as a product of local operators at each
of the six vertices. By locality, the commutator of a pair of
patch operators is equal to the commutator of the local oper-
ators at the shared vertex. However, since the pair product to
the identity, the local operators do as well, and hence they, and
the patch operators, mutually commute.

We can evaluate the hexagonal self-obstructor invariant
by connecting it to the windmill statistics of the bulk frac-
ton quasiparticles. We begin by re-writing the invariant as
q̃h = (ÂĈ†)(ĈB̂)(ĈÂ†)(B̂†Ĉ†). This corresponds to the
commutator between the product of patch operators ÂĈ†, and
the product ĈB̂. Now, we can view each product as transfer-
ring 5 “quasiparticles” from a region near the first patch oper-
ator to a region near the second. This can be seen in Fig. 14(c),
where the product ÂĈ† transfers the 5 red quasiparticles near
patch operator Â to the 5 green locations near patch opera-
tor Ĉ. This is analogous to the picture presented in Fig. 6,
where we view a semi-infinite string operator on the bound-

ary as transferring a quasiparticle from infinity to the end of
the string.

This motivates a picture of the hexagonal self-obstructor
invariant in terms of the quasiparticle self statistics. The total
commutator, (ÂĈ†)(ĈB̂)(ĈÂ†)(B̂†Ĉ†), serves to exchange
the 5 quasiparticles (red) near patch operator Â with the 5
quasiparticles (blue) near patch operator B̂, through an inter-
mediary set of 5 locations (green) near patch operator Ĉ. To
express this exchange process entirely in the bulk, we can mul-
tiply the boundary operators ÂĈ† and ĈB̂ by bulk stabilizers.
This is analogous to our procedure for deforming the semi-
infinite boundary strings into the bulk in Fig. 6. The result
is shown in Fig. 14(c). The boundary operator ÂĈ† can be
written as a product of bulk operators shown in red and green,
and the boundary operator ĈB̂ as a product of bulk operators
shown in green and blue. The commutator of the boundary op-
erators is equal to the commutator of the corresponding bulk
operators. Viewing Fig. 6, this is equal to the threefold com-
mutator of the red, blue, and green bulk plaquette operators at
the point at which they intersect. This is precisely the wind-
mill statistics introduced in Ref. [96].

VI. BOUNDARIES OF FRACTAL MODELS

We now turn to the boundaries of stabilizer models with
fractal conservation laws. The most well-known example is
the Haah’s code [32], with stabilizers:

Σ =

 1 + x̄+ ȳ + z̄ 0
1 + x̄ȳ + ȳz̄ + z̄x̄ 0

0 1 + xy + yz + zx
0 1 + x+ y + z

 . (97)

In contrast to the simple geometric conservation laws in our
previous examples, the conservation laws of Haah’s code take
“fractal” patterns in real space. These patterns are elegantly
captured within the polynomial formalism. We will show that
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the fractal conservation laws lead to fractal constraints on the
boundary operator algebra, and introduce generalizations of
the self- and mutual-obstructor invariants in these settings.

A. Conservation laws in the polynomial formalism

We begin by developing a more robust framework for an-
alyzing conservation laws in stabilizer models using the lan-
guage of module theory in mathematics [57].

Bulk conservation laws.—Thus far, the conservation laws
we’ve considered have corresponded to infinite products of
stabilizers over a plane of the lattice. They are defined by
conditions of the form:

Ξ(x, y, z) · σ(x, y, z) = 0, (98)

where σ ∈ S is a stabilizer and Ξ describes an infinite
sum of all monomials within the plane, for example Ξxy =∑

i,j x
iyj . As previously discussed, the effect of multiplica-

tion by Ξxy can be captured by setting the x and y coordinates
of the polynomial vector to 1. Specifically, we have

Ξxy · σ = Ξxy · σ′ ⇔ σ(1, 1, z) = σ′(1, 1, z), (99)

i.e. the polynomial vectors σ and σ′ are equal after multipli-
cation by Ξxy if and only if they are equal when evaluated at
x, y = 1. This is understandable because Ξxy involves a prod-
uct of stabilizers over the entire xy-plane, and hence transla-
tions by x or y do not affect the result. It will be illuminating
to recast this in the following, equivalent form

Ξxy · σ = Ξxy · σ′ ⇔ σ = σ′ + (x− 1)δx + (y − 1)δy.
(100)

for some δx, δy ∈ Z
2M
n [x, y, z]. Multiplication by Ξxy thus

serves to “set the polynomials (x− 1) and (y − 1) to zero”.
We can formalize this using the mathematical notions of

a polynomial ideal and a quotient ring. First, we define
the set of all linear combinations of a set of polynomials
p1, . . . , pn as the ideal generated by the polynomials, denoted
p = (p1, . . . , pn). Note that the coefficients of the linear com-
binations are allowed to be polynomials themselves. We can
also define the multiplication of an ideal p with a moduleM as
the set generated by multiples of elements of p with elements
of M , pM = span({pm|p ∈ p,m ∈ M}) ⊆ M . Note that
pM is sub-module of M . Finally, we can define the quotient
moduleM/N of a moduleM by a sub-moduleN ⊆M as the
set of equivalence classes of M under addition by elements of
N . That is, two equivalence classes [m], [m′] ∈ M/N are
equal if there exists n ∈ N such that

[m] = [m′] ⇔ m = m′ + n. (101)

We can also define the quotient map, π : M → M/N via
π(m) = [m].

Returning to the subject at hand, comparing Eq. (100)
and Eq. (101) we see that multiplication by Ξxy is naturally

viewed as quotienting the module Z2M
n [x, y, z] by the sub-

module

cxyZ
2M
n [x, y, z] (102)

= {(x− 1)δx + (y − 1)δy | δx, δy ∈ Z2M
n [x, y, z]},

where we define the ideal cxy = (x− 1, y − 1). We immedi-
ately have

ΞxyZ
2M
n [x, y, z] ∼= Z

2M
n [x, y, z]/cxyZ

2M
n [x, y, z]. (103)

This follows from Eq. (100), because two elements on the left
are equal if and only if their difference lies in cxyZ

2M
n [x, y, z].

We can therefore view multiplication by Ξxy as equivalent to
the quotient map,

πcxy
: Z2M

n [x, y, z] → Z
2M
n [x, y, z]/cxyZ

2M
n [x, y, z]. (104)

This formulation immediately suggests a generalization to
arbitrary polynomial ideals c. Suppose we have an infinite
pattern Ξc that annihilates exactly the set of polynomials in
the ideal c,

Ξc(x, y, z) · c(x, y, z) = 0 ⇔ c(x, y, z) ∈ c. (105)

Then multiplication by Ξc naturally induces a quotient map,

πc : Z
2M
n [x, y, z] → Z

2M
n [x, y, z]/cZ2M

n [x, y, z]. (106)

We are now in position to state our more general formu-
lation of conservation laws. We say that a stabilizer σ ∈ S
features a conservation law over the ideal c if

πc(σ) = 0, (107)

where πc is the quotient map defined above restricted to the
stabilizer module S ⊂ Z

2M
n [x, y, z]. The set of conservation

laws for a pattern c corresponds to the kernel of πc.
We can further refine this definition by noting that any sta-

bilizer multiplied with a polynomial c ∈ c trivially obeys the
condition above. The set of such stabilizers is the sub-module
cS ⊂ S. To ‘mod out’ these trivial elements, we define the
conservation law module of the ideal c as,

C = ker(πc)/cS. (108)

The conservation laws of a stabilizer model are thus charac-
terized by pairs (

c , C
)

(109)

of an ideal c and its associated conservation law module C.
Boundary constraints.—The set of all linear combina-

tions of truncated boundary operators forms a sub-module
on Z

2M̃
n [x, y], where M̃ = M(K − 1) is the number of

spins in the boundary unit cell. The bulk stabilizers provide
equivalence relations, “=

GS
”, on Z2M̃

n [x, y]. We thus define the

module S̃ of truncated boundary operators via the quotient,
S̃ = span(Σ̃)/ =

GS
, with respect to this equivalence relation.
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To characterize the global boundary constraints, we again note
that multiplication by a pattern, Ξb corresponding to an ideal
b, induces a map

πb : span(Σ̃) → Z
2M̃
n [x, y]/bZ2M̃

n [x, y], (110)

and similarly,

πS̃
b : S̃ → S̃/bS̃. (111)

The boundary constraints correspond to the kernel of πS̃
b ,

i.e. operators that are equal to identity on the boundary Hilbert
space after multiplication by the infinite pattern Ξb, but not
before. To isolate the constraints from potential conservation
laws in the boundary theory, we define the constraint module
of the ideal b as,

B = ker
(
πS̃
b

)/(
ker(πb)/ =

GS

)
. (112)

The constraints of the boundary operator algebra are thus
characterized by pairs (

b , B
)

(113)

of an ideal b and its associated constraint module B.
Examples.—We can illustrate these definitions using our

previous examples. In 2D stabilizer models, we fo-
cused on conservation laws over the ideal cxy = (x −
1, y − 1). The quotient module obeys the isomorphism
Z

2M
n [x, y]/cxyZ

2M
n [x, y] ∼= Z

2M
n , while the corresponding

quotient map is obtained by evaluating the polynomial at one,
πcxy

(σ) = σ(1, 1) ∈ Z
2M
n . In the Zn toric code, the ker-

nel of the quotient map is equal to the entire set of stabilizers,
ker(πcxy

) = S. The quotient by cxyS serves to “evaluate
the coefficients of the stabilizer generators at one”, giving the
conservation law module

Cxy = {dXσX + dZσZ |dX , dZ ∈ Zn} ∼= Zn × Zn. (114)

Denoting σX = ΣcX for cX = (0, 1)T and similar for cZ ,
we said that cX and cZ featured a conservation law.

Meanwhile, in the X-Cube model we had non-trivial con-
servation laws for each of the ideals cxy = (x − 1, y −
1), cyz = (y − 1, z − 1), czx = (z − 1, x − 1). Fo-
cusing on cxy for specificity, we have the isomorphism
Z

2M
n [x, y, z]/cxyZ

2M
n [x, y, z] ∼= Z

2M
n [z] and the quotient

map πcxy
(σ) = σ(1, 1, z) ∈ Z

2M
n [z]. The corresponding

conservation law module is thus

Cxy = {dX(z)σX,z + dZ(z)σZ |dX , dZ ∈ Zn}
∼= Zn[z]× Zn[z],

(115)

and similar for (cyz, Cyz) and (czx, Czx).

B. Fractal stabilizer models

We now turn to stabilizer models with fractal conservation
laws. Specifically, we consider models of the so-called “frac-

tal spin liquids” of the form [33],

Σ =

1− z̄g(x̄, ȳ) 0
h(x̄, ȳ) 0

0 h(x, y)
0 1− zg(x, y)

 = (σZ ,σX). (116)

In the following section, we will see that this class of mod-
els are particularly amenable to termination on the (001)-
boundary. We note that Haah’s code [Eq. (97)] can be re-cast
in this form, with h(x, y) = 1 + x + y + xy + x2 + y2 and
g(x, y) = (1 + x+ y) [33].

The bulk conservation laws of these models are not as sim-
ply expressed as in the toric code or X-Cube model. For in-
stance, one might naively try to write the conservation law,

Ξ(x, y, z)σX = 0, (117)

where we define the pattern Ξ via an infinite sum,

Ξ(x, y, z) =

∞∑
i,j=−∞

(
zg(x, y)

)i(
1− h(x, y)

)j

. (118)

This is in analogy to the conservation laws of 2D stabilizer
models, replacing x → zg(x, y) and y → 1 − h(x, y). Cru-
cially, the pattern Ξ obeys the conditions,

Ξ(x, y, z) · (1− zg(x, y)) = 0,

Ξ(x, y, z) · h(x, y) = 0,
(119)

which can be verified formally by re-indexing the summa-
tion as in Eq. (43). These conditions guarantee that Eq. (117)
holds, since σX contains components equal to h and 1 − zg.
Nonetheless, our expression for Ξ is unwieldy since it con-
tains negative powers of the polynomials g(x, y) and 1 −
h(x, y), which are not easily defined9.

We can express the conservation laws more elegantly using
the formalism introduced in the previous subsection. We have
two conservation laws,(

c , σX

)
,

(
c̄ , σZ

)
(120)

over the ideal c = (1 − zg(x, y), h(x, y)) and the spatially-
inverted ideal c̄ = (1− z̄g(x̄, ȳ), h(x̄, ȳ)), respectively. In the
above, to be precise we should replace σX and σZ with the
conservation law modules Cc = span(σX)/c span(σX) and
Cc̄ = span(σZ)/c̄ span(σZ). Note that the first conservation
law corresponds to the infinite pattern Ξ(x, y, z) described the
previous paragraph, while the second conservation law corre-
sponds to its spatial inversion, Ξ(x̄, ȳ, z̄). We see that with
this notation, the conservation laws of fractal stabilizer mod-
els can be written just as simply as those of the toric code.

9 One can obtain a precise definition of Ξ in the specific case of peri-
odic boundary conditions with L = nℓ unit cells in each direction,
where n is the qudit dimension and ℓ is an integer. To do so, one ex-
ploits the fact that (a + b)n = an + bn over Zn and defines Ξ =

(1 − zg(x, y))n
ℓ−1h(x, y)n

ℓ−1. The conditions Eq. (119) then follow
because the multiples contain a factor of (1 − zg(x, y))n

ℓ
or h(x, y)n

ℓ
,

each of which is zero with the given boundary conditions.
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C. Boundary operator algebra and fractal constraints

We now construct the operator algebra and constraints of
the boundary Hilbert space. We restrict to the (001)-boundary,
which allows a particularly simple truncation for the models
we consider. We find truncated boundary operators,

Σ̃ =

 1 0
h(x̄, ȳ) 0

0 0
0 g(x, y)

 , (121)

which feature an adjacency matrix,

A =

(
0 h(x, y)g(x, y)

h(x̄, ȳ)g(x̄, ȳ) 0

)
. (122)

We note that this is the same adjacency matrix obtained from
the two-dimensional model,

Σ2D =

(
h(x̄, ȳ) 0

0 g(x, y)

)
, (123)

which obeys a fractal subsystem symmetry [100].
To obtain the constraints on the boundary operator algebra,

we must terminate the bulk conservation laws on the bound-
ary. Consider the expression for the conservation law as an
infinite sum in Eq. (117). Boundary termination consists of
eliminating all terms with negative powers of z. This is again
particularly simple for the (001)-boundary in the models we
consider. We obtain:

∞∑
j=−∞

(
1− h(x, y)

)j

σ̃Z

=

z̄ ∞∑
i=1

∞∑
j=−∞

(
zg(x, y)

)i(
1− h(x, y)

)j
σZ

=
GS

0.

(124)

The LHS is equal to an infinite product of truncated boundary
operators, and the RHS of bulk stabilizers. Similarly, the σX

constraint is given by

∞∑
j=−∞

(
1− h(x̄, ȳ)

)j

σ̃X

=

 1∑
i=−∞

∞∑
j=−∞

(
z̄g(x̄, ȳ)

)i(
1− h(x̄, ȳ)

)j
σX

=
GS

0.

(125)

As we did for the bulk conservation laws, we can express the
boundary constraints more elegantly using polynomial ideals.
We have two boundary constraints:(

b , σ̃X

)
,

(
b̄ , σ̃Z

)
, (126)

over the ideal b = (h(x, y)) and its spatial-inversion b̄ =
(h(x̄, ȳ)), respectively. The first constraint signifies that the
boundary operator σ̃X obeys Ξb · σ̃X =

GS
0 for any infinite

pattern Ξb than annihilates all elements in the ideal b (and
similar for the second contraint and σ̃Z).

D. Mutual-obstructor invariant

We now introduce the obstructor invariants for fractal sta-
bilizer models. These will allow us to demonstrate that their
boundary operator algebra cannot be realized in any LTPS.

To begin, recall that the boundary constraints necessarily
commute with every boundary operator. Similar to previous
sections, this enforces:

A · bX ∈ bZT̃
n [x, y],

A · bZ ∈ b̄ZT̃
n [x, y]

(127)

where we define T̃ = (K − 1)T . These are easily verified
from Eq. (122). Note that we can invert the second constraint
to obtain,

b†Z ·A ∈ bZT̃
n [x, y], (128)

so that it involves the same ideal as the first. Any of the above
equations imply

b†Z ·A · bX ∈ bZn[x, y]. (129)

To motivate the mutual-obstructor invariant, we first ob-
serve that the adjacency matrix obeys stronger requirements
in a 2D LTPS. Consider a LTPS with operators ΣTP. If these
operators have a conservation law for the ideal b, we have

ΣTP · bX ∈ bZT̃
n [x, y],

b†Z ·Σ†
TP ∈ bZT̃

n [x, y],
(130)

where we have again inverted the second equation. These im-
ply that we can write:

b†ZATPbX = b†ZΣ
†
TPλΣTPbX = b1b2p

†
2λp1. (131)

where b1, b2 ∈ b and p1,p2 ∈ Zn[x, y]. This implies that
b†ZAbX is contained in the square of the original ideal,

b†ZATPbX ∈ b2ZT̃
n [x, y], (132)

where b2 = ({bibj |bi, bj ∈ b}). In the present case, we have
b = (h(x, y)) and thus b2 = (h(x, y)2), so Eq. (132) states
that the adjacency matrix element has a zero of multiplicity
two at h(x, y) = 0.

This suggests that we define the mutual-obstructor invariant
by taking the quotient over the squared ideal. Namely, we
define

b̃(Z,X) = πb2(b†ZAbX), (133)
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which lives in the quotient ring

b̃(Z,X) ∈ bZn[x, y]/b
2
Zn[x, y] ∼= Zn[x, y]/bZn[x, y].

(134)
The latter isomorphism holds for ideals, b, that are generated
by algebraically independent polynomials10. In the fractal
spin liquid models of Eq. (116) with b = (h(x, y)), we have

b†ZAbX = h(x, y)g(x, y), (135)

which gives,

b̃(Z,X) = [g(x, y)] ∈ Zn[x, y]/bZn[x, y], (136)

where [g(x, y)] denotes the equivalence class containing
g(x, y). The mutual-obstructor invariant is non-zero as long
as h(x, y) does not divide g(x, y)11. It is illuminating to see
how the obstructor invariants of the toric code and X-Cube
model appear in this formalism. We begin with the toric code.
The boundary constraints are{

bX =

(
0
1

)
, b

}
,

{
bZ =

(
1
0

)
, b

}
, (137)

with b = b̄ since (1 + x) and (1 + x̄) are related by multipli-
cation by the monomial x. The commutator between the two
constraints is,

b†ZAbX = (1 + x), (138)

which, when quotientied over b2 = ((1 + x)2), gives,

b̃(Z,X) = [Dx[b
†
ZAbX ](1)]

= [1] ∈ Zn[x]/bZn[x].
(139)

In the first expression we use the fact that [Dx[(1+x)f(x)]] =

[f(x)] to write the equivalence class of b†ZAbX by (1 + x)
divided by (1 + x) in terms of the Hasse derivative. Note that
the quotient ring obeys Zn[x]/bZn[x] ∼= Zn, in which case
we can write b̃(Z,X) = Dx[b

†
ZAbX ](1) ∈ Zn.

We now turn to Type-I fracton models, focusing on the
(001)-boundary of the X-Cube model for concreteness. The
boundary constraints are:{

bX =

(
0
1

)
, bx

}
,

{
bX =

(
0
1

)
, by

}
,{

bZ =

(
1
0

)
, bx

}
,

{
bZ =

(
1
0

)
, by

} (140)

10 To show this, suppose b = (b1, . . . , bm) with {bi} algebraically indepen-
dent. We define an isomorphism ϕ between the two modules as ϕ(p) =
b1pbibj = b1p. This is well-defined, since ϕ(p + b) = b1p + b1b ∼b2

b1p = ϕ(p). It is also clearly surjective. To verify that is also injective,
suppose ϕ(p1) ∼b2 ϕ(p2). Then b1p1 = b1p2 +

∑
i,j bibjrij . Since

b1 must divide the RHS and {bi} are algebraically independent, we can set
rij = 0 unless i = 1, giving b1p1 = b1p2 +

∑
j b1bjr1j . This implies

p1 = p2 +
∑

j bjr1j , and therefore p1 ∼b p2.
11 If h(x, y) does divide g(x, y), one can easily show that the original model,

Eq. (116), is equivalent to a stack of 2D Hamiltonians in the xy-plane, i.e.
it has trivial topological order in the z-direction

with inversion symmetric ideals, bx = b̄x = (1 + x), by =
b̄y = (1 + y). These differ from the constraints present in the
toric code, as well as the fractal models we consider, since
each interaction term, σ̃Z , σ̃X , participates in two bound-
ary constraints instead of one. Comparing to the the fractal
models, this reflects two different mechanisms of achieving
fractonic excitations: in Type-I theories, bulk fractons cannot
move due to their simultaneous participation in multiple in-
dependent planar conservation laws, while in fractal models,
bulk fractons cannot move due to the fractal patterning of a
single conservation law.

The rectangular mutual-obstructor invariant for the X-Cube
boundary can be re-cast in our current framework by consid-
ering the product of the two ideals, b = bxby . To see this,
suppose that in a general theory a boundary operator bα par-
ticipates in two constraint patterns, b1 and b2, and that another
boundary operator bβ participates in the inverse patterns, b1
and b2. We assume that the constraints are independent, so
that b1 ∩ b2 = b1b2. The constraints imply that the com-
mutator contains at least one factor each from b1 and b2,
i.e. b†βATPbα ∈ (b1b2). In a LTPS, we would have further
that the commutator contains two factors each from b1 and b2,
i.e. b†βATPbα ∈ (b21b

2
2). This exactly resembles the scenarios

in the previous paragraphs, with b = b1b2.
The commutator on the X-Cube boundary is

b†ZAbX = (1 + x)(1 + y). (141)

Following our standard procedure, this gives the mutual-
obstructor invariant,

b̃(Z,X) =
[
Dx[Dy[b

†
ZAbX ]]

]
= [1] ∈ Zn[x, y]/bZn[x, y].

(142)

Note that the mutual-obstructor invariant as defined above
lives in Zn[x, y]/bZn[x, y]. This is different than the Zn clas-
sification we previously found. This difference arises because
here we only considered quotienting by local tensor product
spaces, whereas previously we also quotiented over stacks of
boundaries of two-dimensional theories.

E. Self-obstructor invariant

To address the self-obstructor invariant of models with frac-
tal conservation laws, we consider models beyond CSS codes.
Specifically, we consider a twisted version of the fractal spin
liquid models [101], which hosts emergent fermionic quasi-
particles of the form

σ =

1 + z̄g(x̄, ȳ) (tg + zg)h
h(x̄, ȳ) t̄h(1 + zg)

0 h(x, y)
0 1 + zg(x, y)

 . (143)

Here, we work over Z2 and assume that h(x, y) and g(x, y)
consist of even and odd number of terms, respectively. With
these assumptions, we then define the polynomials th(x, y)
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and tg(x, y) such that th + t̄h = hh̄ and tg + t̄g = 1 + gḡ12.
The bulk conservation laws of the model are identical to those
in our previous CSS model,(

c , σX

)
,

(
c̄ , σZ

)
(144)

where c = (1 + zg(x, y), h(x, y)).
On the (001)-boundary, we obtain the truncated boundary

operators,

Σ̃ =


1 gh
h̄ t̄hg
0 0
0 g

 , (145)

which satisfy identical constraints as in the previous model,
again with b = (h(x, y)). However, the commutation of the
boundary operators now becomes

A =

(
0 hg
h̄ḡ hh̄gḡ

)
. (146)

Note that the second column and first row of A contain factors
of h, and the first column and second row contain factors of
h, as required by the boundary constraints.

To analyze the self-obstructor invariant, we focus on the
inner product b†XAbX = hhgg. Note that this is required to
contain a factor of hh due to the constrains on bX and b†X .
Utilizing the definition th + th = hh, we can decompose the
inner product as

b†XAbX = a+(x, y)− a+(x, y), (147)

with a+(x, y) = thgg. Note that a+(x, y) is only
well-defined modulo addition by a symmetric polynomial,
s(x, y) = s(x̄, ȳ).

Following our usual procedure, we now consider how the
same commutator would behave if the constraints were real-
ized naturally in a LTPS. We will find that in this case, the pos-
itive part of the commutator must contain a factor of hh. To
see this, we first decompose ΣbX = hp and b†XΣ† = hp† for
some vector p. This implies that the commutator can be writ-
ten as hhp†Ap. Decomposing p†Ap = p+(x, y)−p+(x, y),
we have that a+ = hhp+. This motivates us to define the
self-obstructor invariant via

q̃(X) = πbb,S(a
+(x, y))

∈ Z2[x, y]/
(
bbZ2[x, y] + SZ2

[x, y]
) (148)

where the quotient πbb,S is performed over the addition of
the submodule bbZ2[x, y] and the submodule of symmetric
polynomials, which we denote SZ2 [x, y]. The quotient over
the first submodule implies that q̃ is trivial in any LTPS, while

12 For Haah’s code, one choice is th = x(1+x+ y+ ȳ2)+ y(1+ y+ x̄+
x̄2) + x2ȳ2 and tg = x+ y + xȳ.

the quotient over symmetric polynomials is necessary for q̃ to
be independent of our choice of a+(x, y).

Although it is not obvious from the quotient space above,
we can show that q̃ in fact takes values in Z2. Note that the
commutator b†XAbX can be written as fhh̄ for some poly-
nomial f(x, y), owing to the boundary constraint. In the
above model, we have f(x, y) = g(x, y)g(x̄, ȳ). Since the
commutator is anti-symmetric, the polynomial f is as well,
f(x̄, ȳ) = −f(x, y). (To avoid confusion, we note that an
anti-symmetric polynomial is symmetric, and vice versa, over
Z2.) Now, recall that by taking tensor products with a LTPS
we can modify f via f → f + p − p̄ for any polynomial
p(x, y). We can choose p such that it cancels every term in
f aside from the constant term (i.e. the term proportional to
x0y0). The invariant q̃ corresponds precisely to this term, and
therefore lies in Z2. To see this, note that if the constant term
in f is zero, then the commutator is zero up to tensor products
with a LTPS and hence q̃ is also zero. On the other hand, if the
constant term is one, then q̃ = [th]. To show that this equiva-
lence class is not the zero equivalence class, we need to show
that th cannot be written as the sum of a symmetric polyno-
mial s and a multiple r of hh̄. If this were the case, we would
have th + t̄h = s+ s̄+ (r + r̄)hh̄. However, this contradicts
the definition th + t̄h = hh̄, since s + s̄ is zero (because s is
symmetric) and the constant term in r+ r̄ is also zero. Hence,
a non-zero constant term in f implies a non-zero q̃, and so q̃
is a Z2 invariant.

F. Example: Fibonacci prism model

We now show how the obstructor invariants appear in a par-
ticularly simple fractal model: the Fibonnaci prism model.
The Fibonnaci prism model is defined by the bulk stabilizers,

σ =

 1 + z̄ 0
1 + ȳ(1 + x+ x̄) 0

0 1 + y(1 + x+ x̄)
0 1 + z

 , (149)

which correspond to the choices g(x, y) = 1 and h(x, y) =
1+ y(1 + x+ x̄). We again work over Z2 for simplicity. The
simple form of the stabilizers with respect to both the y and
z coordinates will allow us to connect the mutual-obstructor
invariant on the boundary to the commutation of patch op-
erators, and, in turn, to the bulk statistics. To address the
self-obstructor invariant, we will also consider a ‘fermionic’
generalization of the Fibonnaci prism model [see Eq. (156)].

The bulk conservation laws of the Fibbonaci prism model
are ∑

i,j

(1 + x+ x̄)i yi zjσX = 0,

∑
i,j

(1 + x+ x̄)i yi zjσZ = 0,
(150)

These correspond to the ideals c = (1 + y(1 + x+ x), 1 + z)
and c, respectively. The truncated operators on the (001)-
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FIG. 15. The (001)-boundary of the Fibonacci prism model. (a) Frustration graph and constraints of local boundary operators. (b) Patch
operators formed from the Z (blue) and X (red) boundary operators. The mutual-obstructor invariant is equal to the commutator of the patch
operators (top), which is in turn related to the mutual statistics of bulk quasiparticles (bottom). (c) The self-obstructor invariant is equal to the
commutator of two patch operators (top), and is similarly related to the self statistics of bulk quasiparticles (bottom).

boundary are

σ̃ =

 1 0
1 + ȳ(1 + x+ x̄) 0

0 0
0 1

 , (151)

with an adjacency matrix

A =

(
0 1 + y(1 + x+ x̄)

1 + ȳ(1 + x+ x̄) 0

)
. (152)

The constraints imposed on the boundary by the bulk conser-
vation laws are ∑

i

(1 + x+ x̄)i yiσ̃X =
GS

0,∑
i

(1 + x+ x̄)i yiσ̃Z =
GS

0,
(153)

which correspond to the ideals b = (1 + y(1 + x+ x)) and
b, respectively. The frustration graph and constraints are de-
picted in Fig. 15(a).

From the results of the previous section, the mutual-
obstructor invariant is given by [1] ∈ Z2/bZ2. We can con-
nect this invariant to the commutation of fractal patch oper-
ators on the boundary. Consider the patch operators shown
in Fig. 15(b), which correspond to an upward facing triangle
for the σ̃Z operators and a downward facing triangle for σ̃X .
We will consider the commutation of the two patch operators
when the tip of each triangle lies within the bulk of the oppos-
ing triangle, as in Fig. 15(b). A straightforward calculation
gives,

⟨
∞∑
i=0

(1 + x+ x̄)i yiσ̃Z ,

∞∑
j=0

(1 + x+ x̄)j yjσ̃X ⟩

=

∞∑
i=0

∞∑
j=0

yi+j(1 + x+ x̄)i+jb†ZAbX

=

∞∑
k=0

k yk(1 + x+ x̄)kb†ZAbX .

(154)

Now, recall that b†ZAbX = 1+y(1+x+ x̄). (More generally,
b†ZAbX must contain at least a factor of 1+y(1+x+x̄) in or-
der to obey the boundary constraint.) Hence, the commutator
above simplifies to

∞∑
k=0

k yk+1(1 + x+ x̄)k+1 +

∞∑
k=0

k yk(1 + x+ x̄)k

=

∞∑
k=0

yk(1 + x+ x̄)k.

(155)

This is an semi-infinite pattern that encodes which translations
of the upward facing triangle anti-commute with the down-
ward facing triangle. This is analogous to the semi-infinite
sum,

∑∞
i=0 x

i, we previously encountered when looking at
the commutation of two semi-infinite one-dimensional bound-
ary strings. As in the one-dimensional case, the prefactor, 1,
of the semi-infinite pattern is precisely the mutual-obstructor
invariant.

The commutator of the patch operators, and hence the
mutual-obstructor invariant, are easily related to the mutual
statistics of the bulk quasiparticles of the Fibbonaci prism
model. We show this in Fig. 15(b).

To discuss the self-obstructor invariant, we consider a gen-
eralization of the Fibonnaci prism model that features emer-
gent fermionic quasiparticles in the bulk [101, 102]. The sta-
bilizers of this model are

σ =

 1 + z̄ z(1 + y(1 + x+ x̄))
1 + ȳ(1 + x+ x̄) (x̄2 + y(1 + x+ x̄))(1 + z)

0 1 + y(1 + x+ x̄)
0 1 + z

 ,

(156)
which satisfy the same conservation laws as in the previous
model. The truncated operators on the (001)-boundary are

σ̃ =

 1 1 + y(1 + x+ x̄)
1 + ȳ(1 + x+ x̄) x̄2 + y(1 + x+ x̄)

0 0
0 1

 , (157)
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and the adjacency matrix is

A =

(
0 h
h̄ hh̄

)
, (158)

with h(x, y) = 1 + y(1 + x+ x̄).
This features a non-zero self-obstructor invariant, since

b†XAbX = hh̄ (see the discussion in the final paragraph of
the preceding section). The non-zero self-obstructor invariant
leads to a non-zero commutation of the patch operators shown
in Fig. 15(c). The two patch operators correspond to the sums,

2A−1∑
j=0

yj(1+x+ x̄)j , y2
A

2A−1∑
j=0

yj(1+x+ x̄)j , (159)

respectively, where A is an integer that determines the length
of the patch operator. Their commutation corresponds to the
constant x0y0 term in the following:〈

y2
A

2A−1∑
i=0

yi(1 + x+ x̄)iσ̃X ,

2A−1∑
j=0

yj(1 + x+ x̄)jσ̃X

〉

= y−2A
2A−1∑
i=0

2A−1∑
j=0

yj−i(1 + x+ x̄)j−ib†XAbX

(160)

The terms with y0 arise from the i = 0, j = 2A − 1 term in
the sum, multiplied by the y1 term in b†XAbX . Isolating these
terms gives,

(1 + x+ x̄)2
A

= 1 + x2
A

+ x̄2
A

, (161)

which indeed contains a non-zero term for x0. Hence the two
patch operators anti-commute. Note that if the self-obstructor
invariant were zero, then we could write b†XAbX = (p−p̄)hh̄
for some polynomial p(x). Assuming that p does not depend
on y for simplicity, the above expression would be modified
to (1 + x2

A

+ x̄2
A

)(p(x)− p(x̄)) for some polynomial p(x).
This contains no constant term and hence would lead to the
patch operators commuting.

Similar to the mutual-obstructor invariant, the commutator
of the patch operators corresponding to the self-obstructor in-
variant can easily be seen to be equal to the self statistics of the
fermionic Fibbonaci prism model’s bulk quasiparticles. This
is depicted in Fig. 15(c).

VII. OUTLOOK

In this work, we have established a general bulk-boundary
correspondence for topological stabilizer codes. We show that
the anyon data of the bulk topological order, in the form of
bulk conservation laws, gives rise to constraints on the bound-
ary operator algebra. In many cases, these constraints take the
form of emergent symmetries—and, for fracton orders, emer-
gent subsystem symmetries—on the boundary theory. From

these constraints, we define invariants that codify the obstruc-
tions to realizing the boundary theory via local degrees of
freedom. These obstructions are directly inherited from the
non-trivial braiding statistics of the bulk topological order.
Leveraging the polynomial formalism, we apply our frame-
work to three-dimensional fracton phases of matter, provid-
ing a cohesive understanding of the bulk-boundary correspon-
dence for the most well-known fracton stabilizer codes.

We remark that there is a curious relation between the frus-
tration graphs of the boundaries of CSS codes (in which the
graph is bipartite) and cluster states defined on such graphs,
which can be interpreted as an SPT phase. Indeed, a similar
observation has been made by interpreting the entanglement
negativity of topological orders as arising from the partition
function of a cluster state SPT phase at the bipartition, which
arises from the exact same frustration graph [103]. Along
these lines, on the boundaries of fracton stabilizer codes, we
note that our mutual-obstructor invariant (which distinguishes
e.g. the boundary of the X-Cube model from that of a stack of
toric codes) is closely reminiscent of the invariant used to de-
tect strong subsystem-symmetry-protected topological phases
in two dimensions [104].

It would also be interesting to study stabilizer models that
do not have bulk topological order, yet have anyonic excita-
tions on their boundaries. For example, Pauli stabilizer mod-
els have been constructed for all Walker-Wang models associ-
ated to modular Abelian anyon theories [84, 86, 87, 105].

In the context of fracton phases, our results show that a
more general framework than in two-dimensional topological
order is needed to encapsulate the bulk-boundary correspon-
dence. For instance, unlike conventional topological order,
certain exchange statistics of the bulk topological order can
only be detected along certain orientations of the boundary
termination. For example, the self statistics of bulk fractons
in the X-Cube model only affect the (IJK)-boundary termi-
nations, where all of I , J , and K are non-zero. It would be
interesting to determine what are the minimal boundary ter-
minations necessary to reconstruct the bulk fracton order.

Finally, although we have focused our discussion on Z2 sta-
bilizer codes for simplicity, our framework is easily adapted to
qudit stabilizer codes as well as fermions [34, 94, 101]. We
illustrate this in Appendix F, where we apply our framework
to the bulk-boundary correspondence in the Majorana color
code, and Appendix G, where we outline the bulk-boundary
correspondence for the Pauli double-semion model.

Looking further, in higher dimensions, there exist an abu-
dance of topological and fracton orders that can be realized
by stabilizer codes. For instance, recent work has unveiled so-
called hybrid fracton orders [106–111], which exhibit a non-
trivial mixture of mobile and immobile excitations. Extending
our framework to explore the bulk-boundary correspondence
of such phases of matter is an intriguing topic for future work.
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Appendix A: Mathematical properties of the obstructor invariants

In this Appendix, we prove that the self-obstructor invariants q̃(α) and mutual-obstructor invariants b̃(α, β) define a quadratic
and associated bilinear form, by deriving properties 1, 2, 3 in Section III D of the main text.

We begin with Property 1: q̃(αn) = n2q̃(α). The patch operators of the conservation law αn are equal to the nth power of the
patch operators of the conservation law α. The patch operators of the latter obey R̂α

i L̂
α
i = e2πiq̃(α)/dL̂α

i R̂
α
i by definition. By

successively applying this identity to the commutator of (R̂α
i )

n and (L̂α
i )

n, we can derive Property 1:

exp

(
2πi

d
q̃(αn)

)
= (R̂α

i )
n(L̂α

i )
n(R̂α,†

i )n(L̂α,†
i )n = exp

(
2πi

d
n2q̃(α)

)
. (A1)

We now turn to Property 2: b̃(αγ, β) = b̃(α, β) + b̃(γ, β). This follows directly from the fact that Pauli operators commute
up to a phase:

R̂α
i R̂

γ
i L̂

β
j = e

2πi
d b̃(γ,β)R̂α

i L̂
β
j R̂

γ
i = e

2πi
d [b̃(α,β)+b̃(γ,β)]L̂β

j R̂
α
i R̂

γ
i , (A2)

from which Property 2 directly follows.
Finally, we turn to Property 3: b̃(α, β) = q̃(αβ) − q̃(α) − q̃(β). We will prove the re-arranged expression q̃(αβ) = q̃(α) +

q̃(β)− b̃(α, β). The self-obstructor invariant q̃(αβ) is equal to the commutator of the string L̂α
j L̂

β
j with the string R̂α

j R̂
β
j . This

receives four contributions: First, from the commutator of L̂α
j with R̂α

j , which equals the self-obstructor invariant q̃(α). Second,
from the commutator of L̂β

j with R̂β
j , which equals q̃(β). Finally, we receive two ‘cross-terms’ corresponding the commutator

of L̂α
j with R̂β

j , and of L̂β
j with R̂β

j . For Property 3 to hold, we need to show that the final two contributions combine to equal
negative the mutual-obstructor invariant, −b̃(α, β).

To do so, we first introduce a new notation: we denote a finite string from sites i to j corresponding to a constraint α as Ŝα
i,j .

The right and left strings above correspond to taking the second endpoint to infinity, or the first endpoint to negative infinity,
respectively. We also define the commutator C(α, i, j;β, k, l) of two strings via

Ŝα
i,jŜ

β
k,l ≡ e

2πi
d C(α,i,j;β,k,l)Ŝβ

k,lŜ
α
i,j . (A3)

In what follows, we will always assume that endpoints of all strings are either equal, or separated from one another by distances
greater than K. In this case the commutators of strings are independent of the strings’ precise endpoints.

In this new notation, the aforementioned two contributions of interest are equal to the sum of commutators C(α, i, j;β, j, k)+
C(β, i, j;α, j, l). Here we define a new leftmost endpoint i < j −K and two new right endpoints, k > j +K and l > k +K.
This particular arrangement of endpoints is chosen to be convenient for what follows; the commutators are independent of
the endpoints as long as i < j − K and k, l > j + K. We now perform several re-arrangements that lead to our desired
Property 3. First, we apply the equality C(α, i, j;β, j, k) = −C(α, j, l;β, j, k) to the first commutator. This follows because
the string Ŝα

i,l commutes with the string Ŝβ
j,k, since the latter string is fully contained within the former string. The former string

is equal to the product of our original string from i to j with the new string from j to l, Ŝα
i,l = Ŝα

i,jŜ
α
j,l. The fact that the

commutator of the product is zero allows us to exchange the commutator of Ŝα
i,j with that of Ŝα

j,l up to a minus sign. Second, we
eliminate this minus sign by switching the order of the arguments, −C(α, j, l;β, j, k) = C(β, j, k;α, j, l). Third, we note that,
after these re-arrangements, the original sum of commutators has become C(β, j, k;α, j, l) + C(β, i, j;α, j, l). Since the two
commutators share a second argument, we can product together their first arguments to form the string Ŝβi, k = Ŝβi, jŜβj, k.
The sum of commutators is equal to the single commutator C(β, i, k;α, j, l) = −C(α, j, l;β, i, k). The latter is precisely the
mutual-obstructor invariant b̃(α, β), which proves Property 3.

Appendix B: Equality of boundary obstructor invariants and bulk statistics

In this Appendix, we explicitly derive the equality between the self- and mutual-obstructor invariants on the boundary and the
self and mutual statistics of quasiparticles in the bulk, for translation invariant 2D stabilizer models. This explicit computation
makes precise the pictorial derivation in the main text.

We consider a translationally-invariant 2D stabilizer model described by the stabilizer matrix σ(x, y), which contains powers
of x and y between 0 and K. The conservation laws of σ(x, y) correspond to vectors, c, that obey

∞∑
i=−∞

∞∑
j=−∞

xiyjσ(x, y)c = 0, i.e. σ(1, 1)c = 0. (B1)
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FIG. 16. Depiction of Eq. (B2). (Left) The product of a two-dimensional grid of bulk stabilizers, d = Σc, where c represents a bulk
conservation law [Eq. (B1)], is equal to (Right) the product of one-dimensional string operators along the grid boundary.

Here, we have restricted to planar conservation laws, which is valid for 2D topological stabilizer codes. We have also assumed
the conservation law has period one in both directions, which can be ensured by taking an appropriately large unit cell. Writing
d(x, y) ≡ σ(x, y)c, this condition allows one to decompose:

d = (x− 1)dx + (y − 1)dy. (B2)

The topological excitations of the model are given by string operators that anti-commute with stabilizers at either end of the
string. As is familiar from the toric code, these string operators can in fact be generated from the conservation laws of the model.
To see this, take a conservation law, c, and consider the product of the Lx × Ly grid of stabilizers, d = Σc. In the polynomial
notation, this product takes the form:

Σ0,Lx
x Σ0,Ly

y d = (xLx − 1)Σ0,Ly
y dx + (yLy − 1)Σ0,Lx

x dy (B3)

where for convenience we define the polynomial, Σa,b
x ≡

∑b−1
i=a x

i, which obeys (x − 1)Σa,b
x = xb − xa (and similar for

Σa,b
y ). On the right hand side, we have applied Eq. (B2) to reduce the two-dimensional product of stabilizers to a product of

one-dimensional strings around the grid (the first term corresponds to the right and left edge of the grid, the second term to the
top and bottom edge). Now, consider isolating a single string, e.g. along bottom edge of the grid, Sx = −Σ0,Lx

x dy . Since the
grid was formed by a product of stabilizers, Sx commutes with all stabilizers except those within a distanceK of its ends, which
lie at (0, 0) and (Lx, 0). At these points, Sx (potentially) creates a topological excitation. Similarly, the string Sy = −Σ

0,Ly
y dx

creates the same type of excitation at its ends, (0, 0) and (0, Ly).
Mutual statistics in bulk.—We now compute the mutual statistics between topological excitations. Consider the mutual statis-

tics of two excitations, α and α′, generated as above from conservation laws, d, d′. The mutual statistics can be computed via the
commutator of a horizontal string H that creates α excitations with an intersecting vertical string V that creates α′ excitations
(Fig. 6):

exp

(
i
2π

d
b(α, α′)

)
= HVH†V †. (B4)

We take each string to be infinite to ensure they intersect, and abbreviate, Σx ≡ Σ−∞,∞
x . In polynomial notation, we have:

b(α, α′) = [⟨Σxdy,Σyd
′
x⟩]0,0 = ⟨dy,d

′
x⟩(1, 1) =

∑
i,j

[
⟨dy,d

′
x⟩
]
i,j
, (B5)

where we use ⟨Σxdy,Σyd
′
x⟩ = ⟨dy,d

′
x⟩(x, y) · ΣxΣy = ⟨dy,d

′
x⟩(1, 1) · ΣxΣy , and [ΣxΣy]0,0 = 1.

Self statistics in bulk.—We can similarly compute the self statistics. The self statistics of an excitation α are determined by
the outcome of the three-prong exchange process in Fig. 6:

exp

(
i
2π

d
q(α)

)
= ABCA†B†C† = (AB)(CB)(AB)†(CB)†. (B6)

To compute this, we first define the “left corner” string, Σ−∞,0
x dy + Σ−∞,0

y dx, corresponding to AB, and the “right corner”
string, −Σ0,∞

x dy +Σ−∞,0
y dx, corresponding to CB. The self statistics are then determined by the commutator of the two:

q(α) = [⟨Σ−∞,0
x dy +Σ−∞,0

y dx,−Σ0,∞
x dy +Σ−∞,0

y dx⟩]0,0
= −[⟨dy,dy⟩ · xΣ0,∞

x Σ0,∞
x ]0,0 + [⟨dy,dx⟩ · xΣ0,∞

x Σ−∞,0
y ]0,0 − [⟨dx,dy⟩ · yΣ0,∞

y Σ0,∞
x ]0,0

(B7)
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where the fourth cross term is the commutator of an operator with itself, and thus zero. To simplify the first term in this
expression, we note that xΣ0,∞

x Σ0,∞
x =

∑
k>0 kx

k, which gives:

−[⟨dy,dy⟩ · xΣ0,∞
x Σ0,∞

x ]0,0 = −[⟨dy,dy⟩ ·
∑
k>0

kxk]0,0

= −
∑
k>0

k · [⟨dy,dy⟩]−k,0

=
∑
k>0

k · [⟨dy,dy⟩]k,0

(B8)

For the second term, we have:

[⟨dy,dx⟩ · xΣ0,∞
x Σ−∞,0

y ]0,0 =
∑

i<0, j>0

[⟨dy,dx⟩]i,j (B9)

and for the third term:

−[⟨dx,dy⟩ · yΣ0,∞
y Σ0,∞

x ]0,0 = −
∑

i≤0, j<0

[⟨dx,dy⟩]i,j =
∑

i≥0, j>0

[⟨dy,dx⟩]i,j (B10)

Combining the three terms, we have:

q(α) =
∑
k>0

k · [⟨dy,dy⟩]k,0 +

 ∑
i<0, j>0

+
∑

i≥0, j>0

 [⟨dy,dx⟩]i,j

=
∑
k>0

k · [⟨dy,dy⟩]k,0 +
∑
i, j>0

[⟨dy,dx⟩]i,j

(B11)

We will now turn to the boundary commutator and show that they are equal to these expressions.
We begin with a brief note on notation. In the main text and the above, we used subscripts to denote the coefficients of the

term corresponding to a given power of x (in 1D) or x, y (in 2D). Below, we will often want to isolate all the terms with a
fixed power of x or a fixed power of y, in 2D. In what follows, to make it clear which variable we are isolating, we replace the
subscript k with a subscript xk or yk.

We begin by writing down the operators of the boundary Hilbert space, using the truncation procedure introduced in the main
text. To do so, we first decompose the bulk stabilizers power-by-power in y, σ(x, y) =

∑K−1
k=0 yk · [σ]yk(x). We then obtain

one set of boundary operators for each of K translations of σ,

σ̃j(x) ≡ trunc
(
ȳjσ

)
=

K−1∑
k=j

yk−j · [σ]yk(x) (B12)

with j ∈ [1, . . . ,K − 1].
In what follows, we will be focused on boundary operators that correspond to truncations of bulk conservation laws. For a

conservation law, d(x, y) = σ(x, y)c, the associated boundary constraint involves a product over all terminations, j:

d̃ ≡
K−1∑
j=1

σ̃jc

=

K−1∑
j=1

K−1∑
k=j

yk−j · [σ]ykc

=

K−2∑
l=0

yl ·

(
K−1∑

m=l+1

[σ]ymc

)
,

(B13)
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where in the final expression we have collected powers of y. We can rewrite this using the operators dx,dy:

d̃ =

K−2∑
l=0

yl ·

(
K−1∑

m=l+1

[(y − 1)dy + (x− 1)dx]ym

)

=

K−2∑
l=0

yl ·

(
K−1∑

m=l+1

[dy]ym−1 − [dy]ym + (y − 1)[dx]ym

)

=

K−2∑
l=0

yl ·

(
[dy]yl + (x− 1)

K−1∑
m=l+1

[dx]ym

)
(B14)

where we note that [dy]yK−1 = 0 by assumption. Finally, we note that translations under y are not physical for boundary
operators, so we implicitly always take the y0-term of the boundary commutator.

Mutual statistics on boundary.—We now compute the mutual statistics. Consider two boundary strings, one, Σ−∞,A
x d̃, coming

from the left and corresponding to a conservation law, c, and the other, −Σ0,∞
x d̃

′
, coming from the right and corresponding to

a conservation law, c′. We assume the separation between the ends of the two strings is larger than the stabilizers themselves,
A > 2K. As in the main text, the commutator of the two strings is related to the derivative of cÃc′ = ⟨d̃, d̃

′
⟩ (Fig. 6):

b̃(α, α′) = [⟨Σ−∞,A
x d̃,−Σ0,∞

x d̃
′
⟩]x0

= −[x−A+1Σ0,∞
x Σ0,∞

x ⟨d̃, d̃
′
⟩]x0

= −[x−A+1

∑
k≥0

(k + 1)xk

 ⟨d̃, d̃
′
⟩]x0

= −
∑
l

(−l +A) · [⟨d̃, d̃
′
⟩]xl

=
∑
l

l · [⟨d̃, d̃
′
⟩]xl

= Dx[⟨d̃, d̃
′
⟩](1).

(B15)

where in the fourth line we use A > 2K to extend the summation range to infinity, and in the fifth line we use
∑

l[⟨d̃, d̃
′
⟩]xl =

⟨d̃, d̃
′
⟩(1) = 0, since d̃ corresponds to a boundary constraint.

We can re-express the boundary commutator in terms of bulk operators using Eq. (B14). We have:

⟨d̃, d̃
′
⟩ =

∑
l

〈
[dy]yl + (x− 1)

K∑
m=l+1

[dx]ym , [d′
y]yl + (x− 1)

K∑
m′=l+1

[d′
x]ym′

〉
(B16)

and thus

b̃(α, α′) =

[∑
l

Dx

[〈
[dy]yl , [d′

y]yl

〉]
+
∑
m>l

〈
[dy]yl , [d′

x]ym

〉
−
∑
m>l

〈
[dx]ym , [d′

y]yl

〉]
(1)

=
∑
k

k ·
[〈
dy,d

′
y

〉]
k,0

+
∑
k, l>0

[
〈
dy,d

′
x

〉
]k,l −

∑
k, l<0

[
〈
dx,d

′
y

〉
]k,l.

(B17)

To demonstrate that Eq. (B17) is in fact equal to Eq. (B5), we must invoke the commutation of the bulk stabilizers d,d′.
Specifically, we consider the commutator depicted in Fig. 17, of a grid of bulk stabilizers, d, with a grid of bulk stabilizers, d′.
The commutator is zero since the bulk stabilizers mutually commute. Using Eq. (B3), we can decompose the commutator as a
sum of four terms:

[⟨−ΣH1,H3
x Σ−V1,0

y d, ΣH2,H4
x Σ−V2,0

y d′⟩]0,0 = T1 + T2 + T3 + T4 = 0, (B18)

where the terms are defined as (see Fig. 17):

T1 = [⟨y−V1ΣH1,H3
x dy, −xH2Σ−V2,0

y d′
x⟩]0,0

T2 = [⟨−ΣH1,H3
x dy, Σ

H2,H4
x d′

y⟩]0,0
T3 = [⟨−ΣH1,H3

x dy, −xH2Σ−V2,0
y d′

x⟩]0,0
T4 = [⟨−xH3Σ−V1,0

y dx, Σ
H2,H4
x d′

y⟩]0,0.

(B19)
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FIG. 17. Depiction of the commutator in Eq. (B18), with the components comprising each term, T1, T2, T3, T4, circled.

Here, and throughout the following derivations, we take the grid corners to be separated by greater than twice the stabilizer
support, i.e. we assume:

Hα+1 −Hα > 2K, V2 − V1, V1 > 2K. (B20)

It is now straightforward to show that the first term is equal to minus the bulk statistics, Eq. (B5), while the second through
fourth terms are equal to the three terms of the boundary statistics, Eq. (B17). Since the four terms sum to zero, this proves:

b(α, α′) = b̃(α, α′). (B21)

In more detail, for the first term, we have:

T1 = [⟨y−V1ΣH1,H3
x dy, −xH2Σ−V2,0

y d′
x⟩]0,0

= −

 H2−H1∑
i=−H3+H2+1

V1−1∑
j=−V2+V1

xiyj · ⟨dy, d
′
x⟩


0,0

= −
∑
i,j

[
⟨dy, d

′
x⟩
]
i,j

= −b(α, α′).

(B22)

where in the third line we use Eq. (B20) to extend each summation range to (−∞,∞). For the second term, we have:

T2 = [⟨−ΣH1,H3
x dy, Σ

H2,H4
x d′

y⟩]0,0

= −

 −H1∑
i=−H3+1

H4∑
j=H2

xi+j⟨dy, d
′
y⟩


0,0

= −

x−H3+H2

H3−H1∑
i=1

H4−H2∑
j=0

xi+j⟨dy, d
′
y⟩


0,0

= −
∑
k

k ·
[
⟨dy, d

′
y⟩
]
0,−k

=
∑
k

k ·
[
⟨dy, d

′
y⟩
]
0,k

(B23)

For the third term:

T3 = [⟨−ΣH1,H3
x dy, −xH2Σ−V2,0

y d′
x⟩]0,0.

=

 H2−H1∑
i=−H3+H2+1

−1∑
j=−V2

xiyj · ⟨dy, d
′
x⟩


0,0

=
∑
i, j>0

[
⟨dy, d

′
x⟩
]
i,j
.

(B24)



37

Finally, for the fourth term:

T4 = [⟨−xH3Σ−V1,0
y dx, Σ

H2,H4
x d′

y⟩]0,0

= −

 H4−H3∑
i=−H3+H2

V1∑
j=1

xiyj · ⟨dx, d
′
y⟩


0,0

= −
∑
i, j<0

[
⟨dx, d

′
y⟩
]
i,j
.

(B25)

Comparing to Eq. (B17), we see that indeed b̃(α, α′) = T2 + T3 + T4, and thus b(α, α′) = b̃(α, α′).
Self statistics on boundary.—We can also write down the analogous expression for the self statistics (Fig. 6):

q̃(α) = [⟨Σ−∞,0
x d̃,−Σ0,∞

x d̃⟩]x0

= −[Σ0,∞
x Σ0,∞

x · ⟨d̃, d̃⟩]x0

= −[
∑
k>0

(k + 1)xk · ⟨d̃, d̃⟩]x0

= −
∑
k>0

k · [⟨d̃, d̃⟩]x−k

=
∑
k>0

k · [⟨d̃, d̃⟩]xk .

(B26)

Using Eq. (B14), we have:

q̃(α) =
∑
k>0

k ·
∑
l

[〈
[dy]yl + (x− 1)

K−1∑
m=l+1

[dx]ym , [dy]yl + (x− 1)

K−1∑
m=l+1

[dx]ym′

〉]
xk

.

=
∑
k>0

k ·

[∑
l

⟨[dy]yl , [dy]yl⟩

]
xk

+
∑
k>0

k ·

[
(x− 1)

∑
m>l

⟨[dy]yl , [dx]ym⟩+ h.c.

]
xk

=
∑
k>0

k ·

[∑
l

⟨[dy]yl , [dy]yl⟩

]
xk

+
∑
k>0

k ·

[
(x− 1)

∑
m>l

⟨[dy]yl , [dx]ym⟩

]
xk

=
∑
k>0

k ·

[∑
l

⟨[dy]l, [dy]yl⟩

]
xk

−

[∑
m>l

⟨[dy]yl , [dx]ym⟩

]
(1)

=
∑
k>0

k · [⟨dy,dy⟩]k,0 +
∑

k, j>0

[⟨dy,dx⟩]k,j

(B27)

In going from the first to second line, we have used that (x− 1)(x̄− 1)⟨
∑

m[dx]ym ,
∑

m′ [dx]ym′ ⟩ vanishes after summing over
k. Comparing this expression to Eq. (B11), we have:

q̃(α) = q(α). (B28)

Appendix C: Classification of 1D constraint algebras via obstructor invariants

In the main text, we demonstrated that the obstructor invariants are unchanged if one considers tensor products of the con-
straints with conservation laws arising in a 1D LTPS. In this Appendix we go further, and show that the obstructor invariants in
fact fully characterize the polynomials aαβ(x) = [c†αAcβ ](x) up to such tensor products.

We begin with the mutual-obstructor invariant, b(α, β). First, recall that we can write aαβ(x) = (x− 1)dαβ(x) since aαβ(1)
is equal to zero if α, β are boundary constraints. Now, consider a different polynomial, a′αβ(x) = (x − 1)d′αβ(x) with the
same obstructor invariant as a, i.e. Dx[a

′](1) = Dx[a](1) = b(α, β). The difference, a− a′, has an obstructor invariant of zero,
0 = Dx[a−a′](1) = [d−d′](1). This implies that we can write a−a′ = (x−1)(x̄−1)f for some polynomial f . Now, consider
a LTPS with conservation laws cTP,α = ((x− 1), 0)

T and cTP,β = (0, (x− 1)f)
T . We have c†TP,αATPcTP,β = (x− 1)(x̄− 1)f

and thus c′†αAc′β = a′αβ(x) for c′ = c + cTP. Hence the commutation polynomial aαβ(x) can be converted into any a′αβ(x)
with the same obstructor invariant via tensor products with a 1D LTPS conservation law.
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We now turn to the self-obstructor invariant, which involves the polynomial, aα(x) = [c†αAcα](x). Recall that we can always
write aα(x) = a+α (x)−a+α (x̄), where a+α (x) is defined up to addition by an arbitrary symmetric polynomial, s(x) = s(x̄). Now
consider another polynomial, a′α(x) of the same form with the same self-obstructor invariant, Dx[a

′+
α ](1) = Dx[a

+
α ](1) = q(α).

This implies that the difference has derivative zero, Dx[a
+ − a′+](1) = 0. Now, consider a LTPS with conservation law

cTP,α = ((x− 1), (x− 1)t(x))
T for arbitrary t(x). We have c†TP,αATPcTP,α = (x − 1)(x̄ − 1)(t(x) − t(x̄)). Note that the

prefactor obeys (x− 1)(x̄− 1) = x− 2+ x̄. Allowing tensor products with an arbitrary LTPS conservation law thus effectively
sets x− 2+ x̄→ 0, or, equivalently, x̄→ 2−x and x2 → 2x− 1. Sequential applications of the tensor product can thus reduce
an arbitrary polynomial a+ − a′+ to a polynomial of the form d0 + d1x. The constant d0 can be eliminated via addition with
the symmetric polynomial s(x) = d0. Meanwhile, d1 must be zero because Dx[a

+ − a′+](1) = 0. Hence we can construct a
1D LTPS conservation law obeying c†TP,αATPcTP,α = a(x) − a′(x). The tensor product of this conservation law with cα thus
provides a constraint with commutation polynomial a′α(x).

Appendix D: (I1)-boundaries of the Toric Code

In the main text, we explicitly derived the operator algebra and constraints of the (01)-boundary of the toric code. As we
outline in the main text, our framework easily extends to arbitrary boundaries, and the self- and mutual-obstructor invariants are
independent of the choice of boundary termination. In this Appendix, we demonstrate this explicitly by providing a short explicit
analysis of the (I1)-boundaries of the toric code model, for integer I ≥ 1. We begin the simplest case of the (11)-boundary, and
then proceed to more general (I1)-boundaries with I ≥ 2.

To truncate the stabilizers along the (11)-boundary, we note that the (11)-boundary can be realized as the line y0 after the
transformation

x→ w ≡ xy y → y. (D1)

The new coordinate w runs parallel to the (11)-boundary. The stabilizers in the new coordinates are

Σ =

1 + w̄ȳ 0
1 + ȳ 0
0 1 + y
0 1 + wy

 . (D2)

The truncated boundary operators can be obtained by shifting each stabilizer so that the largest degree in y is y0 and setting ȳ to
zero. This gives boundary operators

Σ̃ =

1 0
1 0
0 1
0 w

 . (D3)

The adjacency matrix of the boundary operators is

A =

(
0 1 + w

1 + w 0

)
, (D4)

just as in the (01)-boundary.
The bulk conservation laws induce the following two constraints on the boundary operator algebra:

∑
i

∞∑
j=1

wiyjσZ(w, y) =
∑
i

∞∑
j=0

wiyj

y + w̄
1 + y
0
0

 =
∑
i

wi

1
1
0
0

 =
∑
i

wiσ̃Z =
GS

0, (D5)

∑
i

∞∑
j=0

wiyjσX(w, y) =
∑
i

∞∑
j=0

wiyj

 0
0

1 + y
1 + wy

 =
∑
i

wi

0
0
1
1

 =
∑
i

wiσ̃X =
GS

0, (D6)

again, just as in the (01)-boundary. Since the boundary operator algebra of the (11)-boundary is precisely equal to that of the
(01)-boundary, the self- and mutual-obstructor invariants are equal as well.
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We now turn to the more general case I ≥ 2. We define new coordinates

x→ w = xyI y → y, (D7)

where w runs parallel to the (I1)-boundary. The bulk stabilizers in the new basis are

Σ =


1 + w̄ȳI 0
1 + ȳ 0
0 1 + y
0 1 + wyI

 . (D8)

As before, the (I1)-boundary now consists of truncating all operators with powers of y less than zero. For I ≥ 2, we obtain I
independent Z-type truncated boundary operators and I independent X-type operators:

Σ̃ =


1 y y2 · · · yI−1 0 0 · · · 0 0
1 1 + y y + y2 · · · yI−2 + yI−1 0 0 · · · 0 0
0 0 0 · · · 0 0 0 · · · 0 1
0 0 0 · · · 0 w wy · · · wyI−2 wyI−1

 . (D9)

The commutation of the truncated boundary operators is described by an adjacency matrix

A =

(
0 AZX

−A†
ZX 0

)
(D10)

where AZX encodes the commutation of the Z-type operators with the X-type operators. For I ≥ 2, we have

AZX =


x 0 0 0 1
x x 0 0 0

0
. . . . . . 0 0

0 0 x x 0
0 0 0 x x


I×I

. (D11)

The bulk conservation laws, which involve products over all translations of bulk stabiliers, lead to boundary constraints that
involve products over all I truncated boundary operators (of each type X and Z). Namely, we find∑

i

wiΣ̃cZ =
GS

0, cZ = (1, 1, . . . , 1︸ ︷︷ ︸
I

, 0, 0, . . . , 0︸ ︷︷ ︸
I

)T (D12)

∑
i

wiΣ̃cX =
GS

0, cX = (0, 0, . . . , 0︸ ︷︷ ︸
I

, 1, 1, . . . , 1︸ ︷︷ ︸
I

)T . (D13)

The self- and mutual-obstructor invariants are defined by inner products of the adjacency matrix with the constraint vectors
cZ , cX . We have:

cTZAcZ = cTXAcX = 0 (D14)

cTXAcZ = cTZAcX = 1 + x. (D15)

We see that the inner products with the constraint vectors are exactly equal to the those of the (01)-boundary, despite the fact that
the (I1)-boundary operator algebra is quite different. The equality of the self- and mutual-obstructor invariants directly follows.
We note that, in principle, the inner products above could have differed between boundaries as long as the obstructor invariants
remained the same.

Appendix E: Boundaries of higher-dimensional toric codes

In this Appendix, we study the boundaries of 3D and 4D toric codes. We show that the obstruction to a LTPS is characterized
by first derivatives of the boundary adjacency matrix, in contrast to the higher derivatives found for Type-I fracton models.
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1. 3D Toric Code

The stabilizers of the 3D toric code can be written as

Σ =


1 + x̄ 0 0 0
1 + ȳ 0 0 0
1 + z̄ 0 0 0
0 0 1 + z 1 + y
0 1 + z 0 1 + x
0 1 + y 1 + x 0

 . (E1)

The excitations of the 3D toric code consist of point charges e and flux loopsm. The charges obey a global (0-form) conservation
law that constrains the total number of charges to be even, while the fluxes obey a 1-form conservation law that constrains them
to form closed loops. Algebraically, these bulk conservation laws can be represented as elements of the kernel of Σ (that is,
vectors that are zero after multiplication by Σ). We have

Σ ·


∑

ijk x
iyjzk 0 0 0 0

0
∑

jk y
jzk 0 0 1 + x

0 0
∑

ik x
izk 0 1 + y

0 0 0
∑

ij x
iyj 1 + z

 = 0. (E2)

The kernel corresponds to the span of the above columns. The final column is a local conservation law enforcing that the product
of vertex operators is the identity. The truncated operators on the (001)-boundary are

Σ̃ =


1 + x̄ 0 0
1 + ȳ 0 0
1 0 0
0 0 1
0 1 0
0 0 0

 , (E3)

where the final stabilizer does not contribute a truncated boundary operator because it lies either entirely within or out of the
bulk. The adjacency matrix is

A =

 0 1 + y 1 + x
1 + ȳ 0 0
1 + x̄ 0 0

 . (E4)

The bulk conservation laws impose the following constraints on the boundary

Σ̃ ·

∑ij x
iyj 0 0 0

0
∑

j y
j 0 1 + x

0 0
∑

i x
i 1 + y

 =
GS

0 (E5)

The last constraint is local since the two truncated boundary vertex operators product to a bulk vertex stabilizer. (We can view
this as a gauge constraint, i.e. the subspace where the last constraint holds is the gauge-invariant subspace). The first constraint
is global. The second and third constraints are one-dimensional constraints around cycles of the torus. However, they are not
subsystem symmetry constraints, as they are deformable by applying the local gauge constraint. Therefore, these are 1-form
constraints. The algebra of these operators can thus be realized in the 1-form symmetric sector of a Z2 gauge theory where
the first constraint is automatically satisfied. Alternatively, via the Kramers-Wannier duality, it can also be realized via the Z2

symmetric sector of the 2D transverse-field Ising model, where the 1-form and local constraints are automatically satisfied.
The mutual-obstructor invariant on the boundary corresponds to the commutation of 2D patch operator P̂m for the first

boundary constraint (which can be viewed as creating an m flux loop at its boundary) and a 1D patch operator P̂e for the second
or third boundary constraint (which can be viewed as creating e excitations at its ends). The two patch operators anti-commute
whenever one endpoint of the 1D patch operator lies within the 2D patch. Let us take

Pm =

0∑
i=−∞

∞∑
j=−∞

xiyjσ̃1,

P e =

∞∑
i=−A

xiy0σ̃3,

(E6)
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for concreteness, where A > K. Their commutator is

⟨Pm,P e⟩0,0 =

 ∞∑
i′=−A

∞∑
i=0

∞∑
j=−∞

xi+i′yj c†1Ac3


0,0

=

x−A
∞∑
i=0

∞∑
j=−∞

(i)xiyj c†1Ac3


0,0

= Dx[c
†
1Ac3](1, 1)

= 1,

(E7)

where throughout we take the x0y0 component (i.e. no relative translation between the patch operators as defined). As antic-
ipated, the patch operators anti-commute. As in the examples in the main text, this anti-commutation can be related to the
braiding of a point charge e with a flux loop m in the bulk.

2. Fermionic 3D toric code

We can perform a similar analysis for the fermionic 3D toric code, where the e-quasiparticle is an emergent fermion[82, 97,
112]. We analyze the Walker-Wang model,

Σ =


1 + x̄ x̄+ yz 0 0
1 + ȳ 0 ȳ + xz 0
1 + z̄ 0 0 z̄ + xy
0 0 1 + z 1 + y
0 1 + z 0 1 + x
0 1 + y 1 + x 0

 . (E8)

The conservation laws are∑
ijk

σ1x
iyjzk =

∑
jk

(σ1 + σ2)y
jzk =

∑
ik

(σ1 + σ3)x
izk =

∑
ij

(σ1 + σ4)x
iyj = 0, (E9)

along with the local equalities,

σ1(1 + xyz) + σ2(1 + x) + σ3(1 + y) + σ4(1 + z) = 0. (E10)

The truncated operators on the (001)-boundary are

Σ̃ =


1 + x̄ y 0 0
1 + ȳ 0 x 0
1 0 0 xy
0 0 1 1 + y
0 1 0 1 + x
0 0 0 0

 . (E11)

The fourth column can be dropped, since σ̃4 = xyσ̃1+(1+x)σ̃2+(1+y)σ̃3. To simplify upcoming computations, we perform
a column operation to define a new set of generators for the boundary operators, via σ̃2 → σ̃2 + σ̃1 and σ̃3 → σ̃3 + σ̃1. This
leads to the boundary operators

Σ̃ =


1 + x̄ 1 + x̄+ y 1 + x̄
1 + ȳ 1 + ȳ 1 + ȳ + x
1 1 1
0 0 1
0 1 0
0 0 0

 . (E12)

The conservation laws impose the same constraints on the boundary as in the 3D toric code:

Σ̃ ·

∑ij x
iyj 0 0 0

0
∑

j y
j 0 1 + x

0 0
∑

i x
i 1 + y

 =
GS

0 (E13)
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However, the algebra of the operators are different. They have an adjacency matrix

A =

 0 1 + y 1 + x
1 + ȳ y + ȳ 0
1 + x̄ 0 x+ x̄

 . (E14)

This corresponds to the algebra of fermion bilinears on a square lattice, or equivalently, a flux-attached gauge theory with an
anomalous Z2 1-form symmetry constraint [101, 113]. Indeed, this is natural from the viewpoint that they correspond to different
input categories for the Walker-Wang model.

Let us demonstrate that the boundary of the fermionic 3D toric code is distinct from the ordinary 3D toric code. In the bulk,
the two models differ in the self statistics of the e particle. On the boundary, we thus turn to the self-obstructor invariant of the
1D constraints (which can be viewed as creating e excitations at their ends). We define the 1D patch operators

Le =

0∑
i=−∞

xiσ̃3, Re =

∞∑
i=1

xiσ̃3. (E15)

Their commutation is

⟨Le,Re⟩ =
∞∑
i=0

∞∑
i′=1

xi+i′ ⟨σ̃3, σ̃3⟩

=

∞∑
k=0

k · xkc†3Ac3.

(E16)

Decomposing c†3Ac3 = a+(x, y)− a+(x̄, ȳ) with a+(x, y) = 1 + x, we have

⟨Le,Re⟩0,0 = Dx[a
+(x, y)](1, 1) = 1. (E17)

The two patch operators anti-commute, as expected since the bulk e excitation is now a fermion. The analogous patch operators
clearly commute in the 3D toric code since the diagonal elements of the adjacency matrix are zero.

3. (1,3) 4D toric code

The (1, 3) toric code has stabilizers

Σ =



1 + x̄ 0 0 0 0 0 0
1 + ȳ 0 0 0 0 0 0
1 + z̄ 0 0 0 0 0 0
1 + w̄ 0 0 0 0 0 0
0 0 1 + z 1 + y 1 + w 0 0
0 1 + z 0 1 + x 0 1 + w 0
0 1 + y 1 + x 0 0 0 1 + w
0 0 0 0 1 + x 1 + y 1 + z


. (E18)

Here, the e-quasiparticle is a point charge with 0-form conservation law, and m is a membrane with a 2-form conservation law.
Algebraically, these are

Σ ·



∑
ijkl x

iyjzkwl 0 0 0 0 0 0

0
∑

jk y
jzk 0 0 0 0 0

0 0
∑

ik x
izk 0 0 0 0

0 0 0
∑

ij x
iyl 0 0 0

0 0 0 0
∑

il x
iwl 0 0

0 0 0 0 0
∑

jl y
jwl 0

0 0 0 0 0 0
∑

kl z
kwl


= 0. (E19)
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We also have the local conservation laws,

Σ ·



0 0 0 0
1 + x 0 0 1 + w
1 + y 0 1 + w 0
1 + z 1 + w 0 0
0 1 + y 1 + z 0
0 1 + x 0 1 + z
0 0 1 + x 1 + y


= 0. (E20)

Taking the (0001)-boundary, the truncated operators are

Σ̃ =



1 + x̄ 0 0 0
1 + ȳ 0 0 0
1 + z̄ 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


. (E21)

where we have removed columns 2,3, and 4 since they live entirely in the bulk.
The constraints on the boundary induced from the bulk conservation laws are

Σ̃ ·


∑

ijk x
iyjzk 0 0 0 0 0 0

0
∑

i x
i 0 0 1 + y 1 + z 0

0 0
∑

j y
j 0 1 + x 0 1 + z

0 0 0
∑

k z
k 0 1 + x 1 + y

 =
GS

0 (E22)

The adjacency matrix is

A =

 0 1 + x 1 + y 1 + z
1 + x̄ 0 0 0
1 + ȳ 0 0 0
1 + z̄ 0 0 0

 . (E23)

The above operator algebra is equivalent to a 2-form Z2 gauge theory with 2-form symmetry constraints, or equivalently the
symmetric sector of the 3D transverse-field Ising model. The mutual-obstructor invariants corresponds to the commutator of a
3D patch operator for the first constraint with the 1D patch operators for the second through fourth constraints. A straightforward
calculation shows that these are equal to the derivatives

Dx[c
†
1Ac2](1, 1, 1) = 1, Dy[c

†
2Ac3](1, 1, 1) = 1, Dz[c

†
1Ac4](1, 1, 1) = 1. (E24)

Similar to before, the mutual-obstructor invariants can be related to braiding bulk e particle with a bulk m membrane.

4. (2,2) 4D Toric Code

The (2, 2) toric code has stabilizers

Σ =



1 + ȳ 1 + x̄ 0 0 0 0 0 0
1 + w̄ 0 0 1 + x̄ 0 0 0 0
1 + z̄ 0 1 + x̄ 0 0 0 0 0
0 1 + z̄ 1 + ȳ 0 0 0 0 0
0 1 + w̄ 0 1 + ȳ 0 0 0 0
0 0 1 + w̄ 1 + z̄ 0 0 0 0
0 0 0 0 0 0 1 + w 1 + z
0 0 0 0 0 1 + z 1 + y 0
0 0 0 0 0 1 + w 0 1 + y
0 0 0 0 1 + w 0 0 1 + x
0 0 0 0 1 + z 0 1 + x 0
0 0 0 0 1 + y 1 + x 0 0



. (E25)
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Both charge and flux excitations are loop operators and obey the following 1-form conservation laws,

Σ ·



∑
jkl y

jzkwl 0 0 0 1 + x̄

0
∑

ikl x
izkwl 0 0 1 + ȳ

0 0
∑

ijl x
iyjwl 0 1 + z̄

0 0 0
∑

ijk x
iyjzk 1 + w̄

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


= 0, (E26)

Σ ·



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0∑

jkl y
jzkwl 0 0 0 1 + x

0
∑

ikl x
izkwl 0 0 1 + y

0 0
∑

ijl x
iyjwl 0 1 + z

0 0 0
∑

ijk x
iyjzk 1 + w


= 0. (E27)

The truncated operators on the (0001)-boundary are

Σ̃ =



1 + ȳ 1 + x̄ 0 0 0 0
1 0 0 0 0 0

1 + z̄ 0 1 + x̄ 0 0 0
0 1 + z̄ 1 + ȳ 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0



(E28)

where we have thrown away the 4th and 8th columns.
The constraints induced on the boundary are

Σ̃ ·



∑
jk y

jzk 0 0 0 0 0 1 + x̄ 0

0
∑

ik x
izk 0 0 0 0 1 + ȳ 0

0 0
∑

ij x
iyj 0 0 0 1 + z̄ 0

0 0 0
∑

jk y
jzk 0 0 0 1 + x

0 0 0 0
∑

ik x
izk 0 0 1 + y

0 0 0 0 0
∑

ij x
iyj 0 1 + z

 =
GS

0. (E29)

The adjacency matrix is

A =

(
0 AZX

−A†
ZX 0

)
, AZX =

 0 1 + z 1 + y
1 + z 0 1 + x
1 + y 1 + x 0

 . (E30)

The adjacency matrix gives rise to the frustration graph of the RBH lattice[114]. The operator algebra is equivalent to a Z2

gauge theory with 1-form symmetry constraints in 3D.
The mutual-obstructor invariants correspond to the commutation of 2D patch operators for the first through third constraints

with 2D patch operators for the fourth through sixth constraints. The patch operators anti-commute whenever their boundaries
are linked. To see this explicitly, consider two patch operators P̂m in the xz plane and P̂e in the xy− plane, constructed from
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FIG. 18. Stabilizer of the Majorana color code, with the unit cell and choice of coordinates indicated.

the second and sixth constraints in Eq. E29 respectively,

Pm =

0∑
i=−∞

∞∑
k=−∞

xizkσ̃2,

P e =

∞∑
i=−A

∞∑
j=−∞

xiyjσ̃6,

(E31)

where A > K (here K = 2). The two patch operators are linked because boundary of the first patch operator pierces that of the
second patch operator at a single point. A straightforward evaluation of their commutator gives

⟨Pm,P e⟩0,0 = Dx[c
†
2Ac6](1, 1, 1) = 1. (E32)

This corresponds to braiding a bulk e membrane with a bulk m membrane.
Let us also compute the self statistics of the dyonic excitation em We take the patch operator

Lem =

0∑
i=−∞

∞∑
j=−∞

xiyj(σ̃3 + σ̃6), Rem =

∞∑
i=0

∞∑
j=−∞

xiyj(σ̃3 + σ̃6) (E33)

The commutator if these two operator evaluates to

⟨Lem,Rem⟩0,0 = Dx[c
†
36A

+c36](1, 1, 1) = 0. (E34)

where A+ =

(
0 AZX

0 0

)
and c†36 = (0, 0, 1, 0, 0, 1). Indeed, it has been observed that the dyonic loop excitation has trivial self

statistics [115].

Appendix F: Boundaries of Majorana fermion codes

Stabilizer codes consisting of Majorana operators can also exhibit topological order[34, 116, 117], and similar anomalies
can be calculated for the boundary of such systems. The geometric proof follows identically for the algebra of Majorana
operators, and similar algebraic techniques can be applied when translation invariance is assumed[34] (also see [101] for a
review). The position of the Majorana operators can similarly be expressed using polynomials in σ and commutation relations
can be computed using the Euclidean inner product

⟨σ1,σ2⟩F = σ†
1σ2. (F1)

In this appendix, we give an example calculation for the Majorana color code[117], which exhibits a Z2 topological order.
A Majorana is placed on each vertex of the honeycomb lattice. The stabilizers consist of a product of six Majoranas around

each hexagon. To represent this algebraically, we choose a unit cell consisting of two Majoranas denoted γ and γ′, and choose
the translation vectors as shown in Fig. 18. The stabilizer is given by

Σ =

(
1 + x̄y + ȳ
1 + xȳ + y

)
(F2)

where the first and second row denotes the position of γ and γ′ respectively.
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FIG. 19. Choice of coordinates and stabilizers for the double-semion model.

The bulk has two global conservation laws given by∑
ij

Σ(1 + xȳ)xiy3j =
∑
ij

Σ(1 + y)xiy3j = 0 (F3)

which can be given the following geometric interpretation. The plaquettes of the honeycomb lattice can be three-colored so that
adjacent plaquettes have different colors. Doing so, we notice that the product of all the stabilizers on a given color are all equal.
Therefore, the conservation law is given by performing a product of stabilizers over two of the three colors.

Now, let us truncate the operators along the (01)-boundary. Translating all terms so that the largest degree of y is y0, we have

Σ =

(
ȳ + x̄+ ȳ2

ȳ + xȳ2 + 1

)
(F4)

Therefore, there are two truncated terms given by

Σ̃ =

(
x̄ 1 + x̄y
1 1 + y

)
(F5)

Note that the remaining y terms no longer correspond to translations. we find

⟨σ̃, σ̃⟩F =

(
0 1 + x̄

1 + x 0

)
(F6)

The bulk conservation laws induce the following constraints∑
i

xiσ̃1 =
∑
i

xiσ̃2 = 0 (F7)

which is analogous toric code constraints. It therefore follows that we obtain the same self and mutual-obstructor invariants.
We note that the algebra of the boundary operators can be obtained by restricting to the fermion parity even subspace. Thus,

we expect this subspace to have the same constraints as the boundary of the toric code since the parity even fermionic operators
can be related to Z2 symmetric Pauli operators via the Jordan-Wigner transformation. This also agrees with the fact that the
ground state of this model is actually equivalent to that of the Z2 (bosonic) toric code tensored with trivial fermionic degrees of
freedom [118].

Appendix G: Boundary of the double-semion model

As a final interesting example, we apply our framework to the boundary of the Z4 double-semion model introduced in
Ref. [94]. For convenience, we have chosen x and y to correspond to the vectors (1, 1) and (0, 1) respectively. The stabi-
lizers are shown in Fig. 19. Algebraically, they can be written as

Σ =

 1− y 2(1− y) 2 0
1− x̄y 2(1− x̄y) 0 2x̄
−1 + x̄y 0 0 2
x̄(1− y) 0 2 0

 . (G1)
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The bulk conservation laws are given by

Σ ·


∑

ij x
iyj 0 2

0
∑

ij x
iyj 1 + x̄

0 0 x̄(1 + y)
0 0 1 + x̄y

 = 0. (G2)

The third column is a local conservation law that encodes the fact that, when squared, the first stabilizer can be written as a
product of the other three stabilizers.

We now turn the boundary operator algebra, focusing on the (1,−1)-boundary for convenience. To truncate on this boundary,
we consider translations of the bulk stabilizers along the y coordinate and set ȳ = 0. This gives boundary operators

Σ̃ =

−1 2
−x̄ 2x̄
x̄ 0
−x̄ 0

 . (G3)

The bulk conservation laws lead to the boundary constraints,

Σ̃ ·


∑

i x
i 0

0
∑

i x
i

0 0
0 0

 = 0. (G4)

The adjacency matrix is given by

A =

(
x− x̄ 2(1 + x)

2(1− x̄) 0

)
(G5)

From this, we find the mutual-obstructor invariants,

b̃ = DxA(1) =

(
2 2
2 0

)
, (G6)

and the self-obstructor invariants,

q̃((1, 0)) = 1, q̃((0, 1)) = 0, q̃((1, 1)) = −1, (G7)

which correspond to the semion, boson, and anti-semion, respectively.
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