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Periodic driving has emerged as a powerful tool to control, engineer, and characterize many-body
quantum systems. However, the required pulse sequences are often complex, long, or require the
ability to control the individual degrees of freedom. In this work, we study how a simple Carr-Purcell
Meiboom-Gill (CPMG)-like pulse sequence can be leveraged to enhance the coherence of a large en-
semble of spin qubits and serve as an important characterization tool. We implement the periodic
drive on an ensemble of dense nitrogen-vacancy (NV) centers in diamond and examine the effect of
pulse rotation offset as a control parameter on the dynamics. We use a single diamond sample pre-
pared with several spots of varying NV density, which, in turn, varies the NV-NV dipolar interaction
strength. Counter-intuitively, we find that rotation offsets deviating from the ideal π-pulse in the
CPMG sequence (often classified as pulse errors) play a critical role in preserving coherence even at
nominally zero rotation offset. The cause of the coherence preservation is an emergent effective field
that scales linearly with the magnitude of the rotation offset. In addition to extending coherence,
we compare the rotation offset dependence of coherence to numerical simulations to measure the
disorder and dipolar contributions to the Hamiltonian to quantitatively extract the densities of the
constituent spin species within the diamond.

Engineered quantum systems have emerged as pow-
erful and flexible tools for probing many-body physics.
Whether composed of atomic, superconducting, or solid-
state defect degrees of freedom, these platforms now rou-
tinely provide important insights into myriad phenomena
such as phases of matter [1–5] and quantum decoher-
ence [6–10], and can even enable the generation of metro-
logically useful entangled states [11–16]. The physics of
these many-body phenomena crucially depends on the in-
terplay between two distinct types of interactions: those
within the system itself (internal) and those between the
system and its environment (external). Hence, control-
ling and characterizing these interactions is central to
developing a many-body quantum simulator or a sensor.

Defects in semiconductors such as diamond - in par-
ticular, the nitrogen-vacancy (NV) center - are especially
promising as a platform for exploring many-body physics
owing to their optical polarizability and their ability to
access large system sizes [4, 6, 18, 19]. While it has re-
cently become possible to synthesize ensembles of dipo-
lar interacting NV centers [6, 20, 21], additional inter-
actions with the environment often destroy the system’s
coherence, limiting the landscape of explorable quantum
many-body phenomena. For example, other defects in
the diamond lattice, such as the spin-1/2 substitutional
nitrogen impurity (P1 centers) or NV centers of other
orientations, introduce a local, random, fluctuating mag-
netic field; such fluctuations are typically the primary
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source of decoherence in NV systems. To design and re-
alize novel many-body states in NV ensembles and gain
a clear understanding of decoherence pathways, it is im-
portant to characterize the various interactions within
the system and between the system and its environment.
Armed with this information, suitable protocols can be
used to either mitigate [22, 23] or leverage [24] these in-
teractions.

One powerful method to probe and manipulate in-
teractions in spin systems is Hamiltonian engineering,
where the spins are manipulated via coherent pulses on
a timescale faster than any interaction strength present
in the system, resulting in an effective time-averaged
Hamiltonian H̄ that describes the evolution of the spins.
Through fine-tuning of the pulse sequence parameters
(i.e., rotation angle, rotation axes, pulse duration, timing
between pulses), the effective Hamiltonian can be engi-
neered to extend coherence by decoupling external disor-
der (e.g., Hahn echo [25] or CPMG [26, 27]) or suppress-
ing internal interactions (e.g., WAHUHA [28]). Recently,
complex sequences have been designed that are capable
of suppressing both disorder and interactions while being
robust to pulse errors (DROID [29]). Outside of dynam-
ical decoupling, Hamiltonian engineering has also been
applied to simulating many-body physics in engineered
spin systems [24].

In this Letter, we demonstrate how the continuous tun-
ing of a simple CPMG-like pulse sequence, hereafter re-
ferred to as ϵ-CPMG, can be leveraged to preserve co-
herence out to timescales approaching T1 in the rotating
frame, T1,ρ, regardless of the ratio of dipolar interactions
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FIG. 1. Measurement of long-lived coherences in a dense
NV ensemble. a) Cartoon sketch of our spin system, a
CVD-grown, nitrogen-doped diamond sample showing spots
that have undergone localized electron irradiation of varying
dosage, resulting in high NV densities that vary across spots.
The NV ensemble (red) is mixed randomly with a bath of
spins (black). A magnetic field (blue) is applied along the 111
direction. b) The ϵ-CPMG pulse sequence. c) Long-lived co-
herences observed under ϵ-CPMG. For the data shown, θ ≈ π,
and N is varied for various fixed values of τ . For comparison,
the spin echo is also shown (N=1, θ ≈ π, variable τ). Data
is taken on spot A (see Table I and Fig. 2(a)). Details of
the fit to the spin echo data are given in the supplemental
information [17].

to disorder. Using ϵ-CPMG, we measure the strength
of dipolar interactions and disorder, an important char-
acteristic of many-body systems. By fitting the data
to numerical simulations, we quantitatively estimate the
density of NV system spins and the surrounding spin
bath. By sweeping rotation offset, we tune the dynam-
ics from being disorder-dominated to dipole-dipole domi-
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FIG. 2. Behavior of ϵ-CPMG sequence. (a) Confocal images
of spots A, B, and L, showing a range of brightness indicating
a range of NV densities. The scale bar is 5µm. b) Coherence
versus ϵ for various NV densities at fixed N = 10 and τ =
250 ns, and (c) for various N for a given NV density (spot A)
and τ . See the supplemental information [17] for a comparison
of this data to an analytic model.

nated in sufficiently dense samples. Importantly, because
ϵ-CPMG leverages rotation offsets, it is inherently robust
to rotation offset pulse errors, a feature that contrasts
it with most other pulse sequences that necessitate in-
creased complexity to achieve pulse error robustness.

We characterize a diamond sample with regions of dif-
ferent densities of NVs tuned via electron irradiation
(Fig. 1(a)) whose dynamics are governed by the following
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Hamiltonian,

H =
∑

i

Bz
i (t)σ

z
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∑
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i σ
y
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i σ
z
j

)
, (1)

where the first summand is referred to as disorder or
external interactions, the second summand contains the
dipolar or internal interactions, Bz

i (t) is the local on-
site field at spin i, which can vary as a function of
time, t. The dipolar coupling between spins i and j
is Jij , and σx,y,z

i are the Pauli spin operators for the
ith spin. Our engineered Hamiltonian approach accom-
plishes this using the ϵ-CPMG sequence (schematically
shown in Fig. 1(b)), which varies a single parameter —
the pulse rotation offset ϵ, defined as the deviation from
a perfect π-pulse. As we will demonstrate, this simple se-
quence permits the characterization of the internal and
external interactions of the NV samples without necessi-
tating either arbitrary waveform generators for fast and
precise phase control or multiple microwave drives as in
double-resonance techniques, such as in double electron-
electron resonance (DEER). Fig. 1(c) shows an example
of these long-lived coherences under the application of
the ϵ-CPMG sequence.

We investigate a chemical vapor deposition (CVD)-
grown diamond sample (sample C041) with a several-µm
thick nitrogen-doped layer, as detailed in previous work
[20]. As schematically indicated in Fig. 1 (a), the di-
amond was irradiated in several ∼ µm-scale spots with
electrons of varying dosage and energy. The electron irra-
diation creates vacancies, and an 850◦C anneal promotes
the conversion of nitrogen to NV centers. A key feature
of our sample is that in the spots with higher irradiation
dosage, the NV density is high enough to play a signif-
icant role in the decoherence dynamics [20]. Here we
examine three distinct irradiated spots on sample C041,
whose details are shown in Table I. We also study the
unirradiated background, where the NV density is suffi-
ciently low such that NV-NV interactions are negligible.
All measurements presented are performed in a ∼ 320 G
magnetic field aligned with one of the four NV axes. Mi-
crowave (MW) pulses address the {|0⟩, |−1⟩} transition
of the aligned NV group.

The pulse sequence is shown schematically in Fig. 1(b).
After optical polarization into |0⟩ using a 532 nm green
laser, a microwave π/2 pulse in the x-direction initial-
izes the spins into the state |+y⟩. Then, with a CPMG-
like train of pulses, the spins undergo repeated rotations
about the +ŷ axis by an angle θ = π + ϵ. At the end
of the sequence, the NVs are mapped into a population
by a final π/2 pulse along the x-direction, and the state
is read out optically via spin-dependent photolumines-
cence under a 532 nm laser pulse. The resulting effec-
tive Hamiltonian under the train of pulses has particu-
larly simple intuition for two specific extremal values of
ϵ: when ϵ = 0, i.e., a conventional CPMG sequence is ap-
plied, static disorder is decoupled [25–27, 30] and dipolar
couplings are unaffected (the dipolar interaction between
two spins is invariant under a π rotation of both spins);

when ϵ = ±π/2, the dipolar interactions between NVs
are maximally averaged out [31] while the static disorder
is only averaged out half as effectively as in the ϵ = 0
case. When both static disorder and dipolar interactions
are present, an intermediate ϵ is best suited to maximiz-
ing the coherence in such cases. Measuring NV ensemble
coherence as a function of ϵ determines the strength of
dipolar coupling relative to disorder.

In Figure 2, we plot the coherence of multiple different
NV ensembles subject to our ϵ-CPMG pulse sequence as a
function of ϵ for τ = 250 ns. The results demonstrate how
this one simple knob can be tuned to optimize coherence
for different spin environments, realized in the differently
irradiated spots (Fig. 2(a) and Table I). Fig. 2(b) shows
that in the lowest NV density spot (spot BG) coherence is
maximized for ϵ = 0◦, as in an ideal CPMG sequence. At
ϵ = 90◦ the coherence drops to about half its maximum
value. As the NV density increases in spots L, B, and A,
internal dipolar interactions start to dominate the deco-
herence dynamics at small ϵ, leading to a double-humped
feature where coherence is maximized at a nonzero ϵ.

Having understood the features of the sequence at large
N , we next examine the system’s coherence as a function
of the number of pulses, N . Fig. 2(c) shows coherence vs.
ϵ in spot A for a varying number of pulses, N , while keep-
ing the interpulse spacing constant. Qualitatively, we ob-
serve the emergence and deepening of a coherence dip at
ϵ = 0◦ as N increases. Coherence is also lost at higher
N due to the increased duration of the pulse sequence.
In our case, the dip is clearly visible after ∼ 5 pulses.
Using a simple analytical model to compute the system’s
late-time coherence [17], we reproduce the experimental
observations and find good agreement with the relative
strength between interactions and disorder. We find that
the periodic drive gives rise to an ϵ-dependent effective
magnetic field along the y-direction that suppresses de-
polarization. In dense ensembles of nuclear spins, Refs.
[32, 33] have observed behavior similar to that shown in
Fig. 2.

The important role ϵ plays in the long-lived coherence
is further elucidated in Fig. 3. Here we compare the re-
sults from the CPMG sequence to an alternating-phase
CPMG (APCPMG) sequence applied to spot A (Fig. 3a).
These two sequences have the same filter function [34–36]
but differ in that APCPMG is explicitly designed to can-
cel the effect of accumulating rotation offsets to lowest
order in ϵ. Perhaps counterintuitively, the CPMG se-
quence (red) shows substantially longer coherence times
than the APCPMG sequence (blue), further evidencing
the important role of finite rotation offset in the exten-
sion of coherence. Plotted in black is the Hahn echo
coherence, which decays on a timescale similar to that of
the APCPMG sequence, indicating that the disorder is
largely quasi-static; a Hahn echo sequence, with just a
single π pulse, is sufficient to decouple disorder. We thus
conclude that cumulative rotation offsets are, in fact, key
to the coherence extensions observed here. In nuclear
spin systems, finite pulse duration has been used to ex-
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Spot Dosage Energy [NV]ID [P1]DEER [NV]ϵ−CPMG [spin-defect]ϵ−CPMG

A 1021 (e−/cm2) 200 keV 2.7± 0.08 ppm 3.8± 0.2 ppm 2.1± 0.3 ppm 23.2± 0.5 ppm
B 1020 (e−/cm2) 200 keV 2.2± 0.21 ppm 10.5± 0.2 ppm 1.3± 0.4 ppm 17.4± 0.9 ppm
L 1022 (e−/cm2) 145 keV 1.0± 0.2 ppm - 0.6± 0.3 ppm 16.1± 0.7 ppm

TABLE I. Comparison of spin densities for spots A, B, and L as obtained from instantaneous diffusion (ID), DEER (Ref. [20])
and from ϵ-CPMG, showing good agreement in the NV density. Explanations for the discrepancies are discussed in the text.

plain a similar difference between CPMG and APCPMG
[37, 38]. In the following analysis, we will include the
effects of both finite pulse duration and rotation offset.

While an approximate effective Hamiltonian descrip-
tion of the coherence data, as detailed in the supplemen-
tal information [17], provides physical intuition, it fails
to provide a direct and quantitative mapping between
the properties of the sample and the observed dynamics.
We tackle this gap by numerically simulating the full dy-
namics of the NV ensemble interacting with a bath of
spin-1/2 defects. Crucially, this approach enables us to
capture the full extent of the experimental observations
(both as a function of angle error ϵ and number of pulses
N) and use the agreement between numerical data and
experiments to quantitatively characterize important fea-
tures of the sample such as the density of different spin
defects, thus revealing the relative strengths of disorder
and interactions.

To this end, we numerically compute the dynamics of
an NV ensemble with density nNV surrounded by a bath
of defects at density nbath. The NVs are all initialized
in the |+y⟩ orientation, and their subsequent dynamics
have three contributions: 1) dipolar interactions between
NVs, 2) Larmor precession arising from local, random
magnetic fields generated by the bath spins, and 3) peri-
odic rotations by π+ϵ about the ŷ axis. By contrast, the
bath spin defects are assumed to be randomly polarized
in either ±1/2 and exhibit no coherent dynamics. In-
stead, we consider their dynamics as a stochastic process
that flips the polarization of the spin defect with some
characteristic time scale, giving each spin in the bath a
correlation time τc that is related to the density of the
spin bath, as described in Ref. [8]. Such bath dynamics
are crucial to capture the observed decoherence dynam-
ics of the NV centers - without them, the effect of the
spin bath can be exactly canceled for perfect π pulses.
In addition, we incorporate different experimental effects
into the numerics, such as finite pulse duration, which
are difficult to incorporate in a simple theoretical analy-
sis [39].

By computing the NV ensemble dynamics over differ-
ent sets of densities of NVs and bath spins {nNV, nbath}
and averaging over different spatial configurations of the
NV and bath ensembles [40, 41], we obtain the coherence
dynamics for a wide range of samples as a function of ϵ
and N . We compare the resulting coherence dynamics
across different N : N > 3[42] for each pair of param-
eters, {nNV, nbath}, estimating the agreement between
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ϵ-CPMG sequence. a) Schematic depiction of the pulse se-
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finite rotation offset but APCPMG is designed to cancel the
effect of accumulating rotation offsets. b) Experimental data
showing the difference in coherence times of the CPMG (red)
and APCPMG (blue) sequences with a target of ϵ = 0 using a
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though it has an additional modulation. The inset shows the
different dynamics of the NV spin on the Bloch sphere under
the two sequences.
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numerical and experimental data via a χ2-like measure.

Sample fits and χ2 contour plots are shown in Fig. 4.
We find that there is a clear region within this parame-
ter space that minimizes χ2. The corresponding densities
are shown in Table I. The extracted NV densities match
the trends of those measured on the same sample via
DEER and instantaneous diffusion [20], with the precise
values falling within or just outside their respective error
bars. The spin bath density reported here is larger than
the P1 density obtained via DEER, primarily because
the present method is sensitive to all spinful defects in
the diamond, not just to P1s, whereas DEER is, by de-
sign, only sensitive to a single group of P1 centers. These
extra spinful defects could be a result of the high irradi-
ation dosage. Our simulations also give an NV density
slightly lower than what was reported previously from
instantaneous diffusion measurements [20]. The previous
analyses necessitated several approximations, such as a
quasi-static spin bath in the case of DEER and a domi-
nant NV bath in the case of instantaneous diffusion. The
present numerical treatment is free from these assump-
tions and hence should be a more reliable probe of the
NV density.

We stress that our ability to quantitatively extract
the densities of competing disordered and dipolar spin
baths harbors key advantages over other methods such as
DEER, XY8, and instantaneous diffusion, namely tech-
nical simplicity, robustness to pulse errors in the form of
rotation offsets, and the ability to simultaneously probe

both NV density and disorder without assuming one to
be dominant.

DEER decay is a common technique requiring two mi-
crowave sources that can measure specific species’ densi-
ties as it offers spectral resolution; however, obtaining a
figure of merit for the total disordered spin bath can be
challenging exactly because DEER requires addressing
the individual baths spectrally and so spectrally broad
baths may be difficult to address. In addition to this,
while NV-NV DEER is possible, it is challenging be-
cause of the relatively low density of NV centers in a
single group; attempts to increase the density of probed
NV spins by probing three groups simultaneously are
thwarted by the different alignment of the rf field to each
of the three groups, and it is required to wait a time
longer than T ∗

2 for the bath spins to dephase. Instanta-
neous diffusion can be used to measure the strength of
the dipole-dipole interaction via the extension of T2 under
non-π pulses but cannot easily measure disorder and as-
sumes that the change in T2 with pulse angle is unrelated
to the change in coupling to disorder. Using decoupling
techniques like XY8 or DROID [21] and comparing the
coherence times between dipole-decoupled and disorder-
decoupled is another way to assess the relative impor-
tance between these terms. In contrast to the sequence
presented in this Letter, XY8, and DROID require com-
plicated sequencing; in addition, extracting quantitative
values for the strength of disorder vs dipolar interactions
is complicated.

In this Letter, we have shown how the ϵ-CPMG se-
quence extends the coherence of spin ensembles to times
approaching T1,ρ and provides quantitative information
about the relative strengths of dipolar interactions and
disorder, important figures of merit for many-body sys-
tems. Further, we show how our approach to Hamil-
tonian engineering can tune from dipolar-dominated to
disorder-dominated physics. Using this tunability, we
identify an optimal ϵ for maximizing coherence of an NV
ensemble. We benchmark our pulse sequence, its ability
to tune interaction strengths, and our numerical meth-
ods for estimating spin densities on a single sample with
multiple different NV densities.

As decoherence mitigation becomes an increasingly
large scientific endeavor, fast, straightforward, and ac-
curate diagnostic sequences like the one presented here
will become ever more essential for understanding how
many-body quantum systems decohere. Fast and effi-
cient characterization of quantum systems may become
increasingly important in the ‘pipeline’ for creating and
developing samples; we propose that the ϵ-CPMG se-
quence represents one such way of mitigating this poten-
tial bottleneck because it is efficient, has a small technical
footprint, and is unambiguous in its diagnosis. Moreover,
while we expect that ϵ-CPMG will be primarily applica-
ble to solid-state systems, we note that the treatment is
generic and could be applied to systems beyond dense
NV ensembles - in any disordered system where the na-
ture of interactions between particles within the system
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and without must be understood, we expect ϵ-CPMG to
be useful. Finally, we anticipate that this framework may
be extended beyond a two-component Hamiltonian by in-
troducing additional tuning parameters within a periodic
drive (for example, ϵx for x-pulses and ϵy for y-pulses) to
extend this treatment to even more complicated Hamil-
tonians.
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I. EPSILON-DEPENDENCE OF THE
COHERENCE

To gain some intuition for the qualitative shape of the
coherence vs. ϵ, we present a theoretical analysis of the
coherence after ten pulses. We analyze each of the three
spots using this treatment and show that the strength of
the dip corresponds to a term proportional to the vari-
ance of the dipole-dipole coupling, ⟨J2

i,j⟩.
To derive an effective, time-independent Hamiltonian,

we examine the time-evolution operator over two cy-
cles, given a native Hamiltonian, H =

∑
i B

z
i σ

z
i +∑

i<j Jij
(
σx
i σ

x
j + σy

i σ
y
j − σz

i σ
z
j

)
= Hon−site +Hdipolar.

Û2 = e−iHτRy(π + ϵ)e−2iHτRy(π + ϵ)e−iHτ (1)

= e−iHτRy(ϵ)e
−2iH̃τRy(ϵ)e

−iHτ , (2)

where Ry(θ) is the rotation operator about the y-

direction by an angle, θ and H̃ = Ry(π)HRy(π) =
−Hon−site + Hdipolar. Bz

i is the z-field for spin i and
assumed to be time-independent for this analysis, for the
numerical treatment in the main text, we relax this as-
sumption and allow a time-varying field. We then find an
effective time-independent Hamiltonian using the Mag-
nus expansion focusing on the region close to ϵ = 0 be-
cause this is the regime where the effects of finite Ji,j are
most pronounced.

Our zeroth order term will be given by,

H
(0)
eff =

2ϵ
∑

σy
i

4τ
+Hdipole = Beff

M∑

i

σy
i +Hdipole. (3)

Higher order terms will be generated by the commuta-
tors between H, ϵσy

τ , and H̃.
We measure the average coherence along the y-

direction, averaged over the M addressed NV centers.
After equilibrating, the coherence, C, will be given by,
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FIG. 1. (a) Comparison of the coherence as a function of
ϵ across different spots to an analytical model that parame-
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defect density obtained via numerical modeling in the main
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C =
1

M
⟨
M∑

i

σy
i ⟩ =

1

M
tr

[
M∑

i

σy
i e

−βHeff

]
/Z

≈ −β

MZ
tr

[
M∑

i

σy
i Heff

]
=

−βBeff

Z
.

(4)

We use, ρ = e−βHeff/Z, where Z is the partition func-
tion and β is given by an effective spin-temperature,
β = 1/kBT that satisfies βHeff ≪ 1.
The temperature is determined by the initial value of

the y magnetization, which is initialized such that C = 1,
as detailed in the main text. We relate the initial and
final energies through,

M∑

i

Beff = ⟨Heff⟩ ≈
−β

Z
tr
[
H2

eff

]
. (5)

Using Eqn. 4 and 5, we arrive at the expression,
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C =
MB2

eff

tr [H2
eff ]

. (6)

Finally, to arrive at an expression for tr
[
H2

eff

]
, we ex-

amine lowest order terms and expand about ϵ = 0. This
results in the following expression,

tr
[
H2

]
= tr

[
H2

dipolar

]
+ tr

[
M∑

i

(Beffσ
y
i )

2

]
+

higher order terms

= M(J2 +B2
eff) + higher order terms

= M(J2 +D2
1ϵ

2 +D2
2ϵ

4 +D2
3ϵ

6),

(7)

where D1,2,3 are fit coefficients. Using Eqn. 6 and
7 and simplifying in terms of unique fit parameters, we
have:

C =
Aϵ2

(J/D1)2 + ϵ2 + (D2/D1)2ϵ4 + (D3/D1)2ϵ6
. (8)

The typical value of the dipolar coupling J , as defined
in Eqn. 7, should be understood as a local value, char-
acterizing only specific region of the sample. Indeed, if
the quantity trH2

dipolar diverges if averaging is performed
over the whole macroscopic 3D ensemble of rare spins
[1–4]. However, this quantity becomes finite and well de-
termined if defined for a finite small region of the sample.
The fits using this model across varying spot densities

are shown in Fig. 1 (a). We use a Gaussian smooth-
ing of 6◦ to account for the random uncertainties in
pulse rotation caused by pulse-to-pulse variation and in-
homogeneities over the confocal spot. The parameter
(J/D1) relates the strength of the dipolar contribution
to other terms, including Beff and qualitatively controls
the strength of the dip about ϵ = 0. We compare J/D1

to the numerically extracted ratio of NV density to spin
defect density and find that the two have the expected
linear relationship.

II. EXPLANATION OF SPIN ECHO FIT

The data in Fig 1(b) was fit to an exponential,
exp(t/T2)

n with n = 1 and T2 = 3.5µs. This is con-
sistent with the exponent for Ref. [5] for high conversion
efficiencies where the physics is expected to follow an
NV-NV Ramsey type exponential.
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