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At continuous phase transitions, quantum many-body systems exhibit scale-invariance and com-
plex, emergent universal behavior [1–3]. Most strikingly, at a quantum critical point, correlations
decay as a power law, with exponents determined by a set of universal scaling dimensions [4]. Ex-
perimentally probing such power-law correlations is extremely challenging, owing to the complex
interplay between decoherence, the vanishing energy gap, and boundary effects [5–8]. Here, we
employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-
dimensional ring and a two-dimensional square lattice. By accounting for and tuning the openness
of our quantum system, which is well-captured by the introduction of a single phenomenological
length scale [9–11], we are able to directly observe power-law correlations and extract the corre-
sponding scaling dimensions. Moreover, in two dimensions, we observe a decoupling between phase
transitions in the bulk and on the boundary, allowing us to identify two distinct boundary univer-
sality classes [12–14]. Our work demonstrates that direct adiabatic preparation of critical states in
quantum simulators can complement recent approaches to studying quantum criticality using the
Kibble-Zurek mechanism [11, 15–18] or digital quantum circuits [8, 19, 20].

INTRODUCTION

Strongly-interacting many-body systems are a fertile
ground for complex emergent behavior. This is per-
haps most apparent at continuous quantum phase transi-
tions, where fluctuations of competing orders extend over
all length scales [1–3]. In such quantum critical states,
the intricate structure of correlations and entanglement
exhibits striking universal features independent of the
underlying microscopic details. In particular, all long-
distance, low-energy behavior is expected to be governed
by a small set of universal quantities, known as scaling
dimensions [4]. Determining these scaling dimensions re-
mains a fundamental focus for both theoretical and ex-
perimental studies of quantum criticality [21–23].

The most direct signature of quantum criticality is the
universal, power-law decay of correlations in real space;
the exponents of this decay are directly proportional to
the scaling dimensions. Despite conceptual simplicity,
the direct observation of power-law decays has remained
an outstanding challenge, even in quantum simulators
with microscopic resolution and full access to local ob-
servables [5–8]. There are three main difficulties. First,
the direct preparation of critical ground states is chal-
lenging due to the vanishing of the energy gap [24]. Sec-
ond, the long-range entanglement inherent to quantum
critical states is inhibited by the presence of decoherence
in noisy-intermediate-scale-quantum simulators [25–28].
Finally, boundary effects in finite-size systems complicate
the interpretation and extraction of universal physics
from the bulk.

In this work, we address each of these challenges, and
experimentally observe critical, real-space correlations
using a programmable Rydberg simulator based on a ce-

sium (133Cs) atom array. Our main results are as follows.
First, by carefully optimizing time-dependent ramp pro-
files, we adiabatically prepare critical ground states in
the Ising universality class, in both one and two dimen-
sions (Fig. 1). For the 1D case, we utilize a ring geome-
try in order to eliminate strong, confounding effects from
symmetry-breaking fields at the edge (Fig. 1a,b). From
the power-law decay of spatial correlations, we extract
the scaling dimensions, ∆1D

σ and ∆2D

σ , of the order pa-
rameter. Our approach naturally complements seminal
recent works that extract scaling dimensions via either
holographic digital quantum circuits [8, 19, 20] or the
Kibble-Zurek mechanism [11, 15–18, 29, 30]. Second, by
tuning the amount of decoherence in our Rydberg sim-
ulator, we investigate the nature of quantum criticality
in open systems. Somewhat remarkably, we find that
a single, decoherence-induced length scale, ξd, captures
the openness of our quantum system across all parame-
ter regimes [11]. Finally, an additional feature that arises
in two dimensions is the possibility that the 1D bound-
ary exhibits its own independent phase transition [31].
By varying the interaction strength, we access two dis-
tinct boundary universality classes [12–14]: (i) the ordi-
nary class where the bulk and boundary order simulta-
neously and (ii) the surface class, where the boundary
orders while the bulk remains disordered.

Our experiment consists of either a 1D ring or a
2D square lattice of 133Cs atoms trapped in an optical
tweezer array (Fig. 1a,b). The atoms are rearranged from
an initial reservoir [32, 33] and subsequently Raman side-
band cooled [34, 35] to a low-temperature state with an
average motional occupation, n̄ < 0.1, for all three axes.
We encode a spin-1/2 degree of freedom in the electronic
ground state |g⟩ = |6S1/2, F = 4,mF = 4⟩ and a highly
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FIG. 1. Experimental protocols for initialization and state preparation. (a) Fluorescence images of stochastically-
loaded 133Cs atoms in optical tweezer arrays. Open circles show the locations of unloaded optical tweezers. (b) Defect-free
atom arrays after rearrangement. (c) Upper: Schematic of the 1D phase diagram. The dashed arrow denotes the adiabatic state
preparation trajectory with the star indicating the critical point. Lower: Optimized ramp profile for adiabatic preparation of
the critical state. (d) Fluorescence images of the array after adiabatic state preparation. The open circles denote the absence
of an atom, which is inferred to be in the Rydberg state.

excited Rydberg state |r⟩ = |54S1/2, J = 1/2,mJ = 1/2⟩.
A driving field that couples these states is realized via
a two-photon transition mediated by the intermediate
state, |7P3/2⟩ [36]. The combination of this on-site field
and the presence of strong van der Waals interactions be-
tween Rydberg atoms, gives rise to the effective Hamil-
tonian,

H =
Ω

2

∑
i

(|gi⟩⟨ri|+ |ri⟩⟨gi|)−∆
∑
i

ni +
∑
i<j

Vijninj ,

(1)
where ni = |ri⟩⟨ri|. Here, Vij = C6

R6
ij

characterizes the

long-range van der Waals interaction, with Rij being the
distance between atoms i and j, while Ω and ∆ corre-
spond to the two-photon Rabi frequency and the detun-
ing of the driving field, respectively.

Parameterizing the Hamiltonian via the ratio of the
blockade radius, Rb = (C6/Ω)

1/6, to the lattice spacing a,
and the ratio, ∆/Ω, of the detuning to the Rabi frequency
(Fig. 1c), leads to phase diagrams exhibiting a variety of
symmetry-breaking [18, 37] and topological orders [38].
Our specific focus will be on the continuous phase transi-
tion between the disordered paramagnetic phase and the
Z2-ordered antiferromagnetic phase [17, 39] (Fig. 1c), de-
scribed by the Ising conformal field theory (CFT) [40, 41].

CRITICAL CORRELATIONS IN 1D

To explore the Ising phase transition in 1D, we prepare
an N = 24 atom ring with the lattice spacing chosen such
that Rb/a ≈ 1.4 (Fig. 1c). We begin by experimentally

locating the critical point, ∆c, using a Kibble-Zurek-like
procedure. At the start of the protocol, all atoms are
initialized in the state |g⟩, corresponding to the many-
body ground state of the Hamiltonian with Ω = 0 at a
large negative detuning. Adiabatically ramping the Rabi
frequency then prepares the ground state, after which
we linearly sweep ∆ across the phase boundary at dif-
ferent rates. For the slowest sweeps (Fig. 2a), one ex-
pects the average Rydberg population ⟨n⟩ to simply fol-
low that of the instantaneous ground state, with a sus-
ceptibility, χ = ∂⟨n⟩/∂∆, that peaks precisely at the crit-
ical point (see Supplementary Material) [18]. For faster
sweeps (Fig. 2a), the Rydberg population lags behind the
ground state expectation and causes the susceptibility to
peak after the transition [42]. As depicted in Fig. 2b, we
extract the detuning, ∆max, corresponding to the peak
susceptibility as a function of the sweep rate. We find
that ∆max converges for sufficiently slow sweeps, allow-
ing us to identify the critical point as ∆c/Ω = 0.97(5).
We note that this value is in agreement with the location
of the minimum excitation gap.
Having identified ∆c, we now turn to adiabatically

preparing the critical ground state. To this end, we fur-
ther optimize the detuning ramp profile by taking into
account the instantaneous energy gap (see Supplemen-
tary Material, Fig. 1c). For our 1D Rydberg array, the
primary field σ of the emergent Ising CFT is represented,
at leading order [41], by the microscopic lattice operator

σi = (−1)i(ni − ⟨n⟩). (2)

In the quantum critical ground state, ⟨σi⟩ = 0 on each
site, but its two-point correlator ⟨σ0σj⟩ decays as a power
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FIG. 2. Critical correlations in a 1D ring geometry. Squares (40-atom), circles (24-atom), stars (24-atom at the critical
point) denote experimental measurements, with shaded regions representing 1-σ bootstrap errors. Gray solid, dotted, and
dashed lines respectively indicate ground state, unitary under optimized ramp, and stochastic wave-function simulation results
using experimental parameters. Horizontal and vertical gray lines mark the location of the gap minimum for the 24-atom
system. (a) Rydberg population density across the phase transition at different sweep rates. Color gradients indicate the sweep
rates variation. Inset: Linear ramp profiles at different sweep rates. (b) Peak location of susceptibility χ at different sweep
rates. (c) σ field correlation measurements around the critical point, with red stars representing the critical correlations. Inset:
1D phase diagram and gap profile with red markers denoting the locations of the measurements. (d) Measured order parameter

⟨Ô⟩ as a function of the tuning parameter ∆/Ω. (e) Fitted decoherence-induced length scale ξd/a at the critical point and
in the AFM phase. The uncertainties in the measurements correspond to a combination of 1-σ bootstrap error and fitting
error. Inset: Measured ⟨σ0σj⟩ in the AFM phase, with exponential fits to extract ξd/a. (f) Measured ⟨σ0σj⟩ at critical points
divided by exp(−δj/ξd) as a function of δj . The results yield a power-law decay with an exponent of 2∆

1D
σ (solid red line). The

uncertainty in ∆
1D
σ includes both 1-σ bootstrap error and fitting error. Inset: Raw measurements of ⟨σ0σj⟩. The solid pink

line represents the expected power-law decay for (1+1)d Ising universality class.

law,

⟨σ0σj⟩ ∝ δ
−2∆

1D
σ

j , (3)

where δj/a = N
π sin

(
πj
N

)
is an effective spatial separation

that accounts for the periodic boundary condition [41].
The exponent of this power law is twice the scaling di-
mension, ∆1D

σ = 1/8, of the (1+1)d Ising CFT.
Interestingly, our data are inconsistent with the power-

law decay of correlations in real-space, and instead, ap-
pear to fall off significantly more rapidly (Fig. 2f, in-
set). This suggests the presence of a mechanism that
inhibits the formation of long-distance correlations. To
investigate this, we adiabatically prepare and character-
ize states away from the critical point, keeping the total
preparation time fixed. In the antiferromagnetic phase,

one analytically expects the correlator, ⟨σ0σj⟩, to exhibit
a plateau at large distances, corresponding to long-range
order. However, as shown in Fig. 2c (dark red curves),
we again observe the rapid decay of correlations; in par-
ticular, we find that the σ field correlator exhibits an ex-
ponential decay with length scale ξ/a = 12.0(13) (inset
Fig. 2e). This raises the question: what is the micro-
scopic origin of this length scale?

There are two natural possibilities. First, despite our
best efforts, the long-distance correlations could still be
cut-off by diabatic errors. Second, decoherence arising
from the openness of our quantum system could also limit
the growth of correlations. To distinguish these possibil-
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FIG. 3. Tuning quantum criticality in an open system. Markers (24-atom) with different shapes are experimental
measurements at the critical point under different experimental conditions, with shaded regions denoting the 1-σ bootstrap
errors. Error bars in fitted ξd/a include 1-σ bootstrap error and fitting error. (a) σ field correlation measurements at two different
ramp times. Upper inset: Fitted ξd/a. Lower inset: Corresponding ramp profiles. (b) σ field correlation measurements at
three different intensity configurations at fixed Ω. Upper inset: Fitted ξd/a. Lower inset: A schematic showing the single
photon rabi frequencies Ω455 and Ω1062 for each configuration. (c) Correlation measurements in (a) and (b) divided by the
exponential exp(−δj/ξd), displaying a collapse onto a power-law decay with an exponent of 2∆

1D
σ (solid black line), acquired

via a simultaneous fit to the power-law exponential model for all scenarios. The uncertainty in ∆
1D
σ includes both 1-σ bootstrap

error and fitting error.

ities, we consider the order parameter

⟨Ô⟩ = 1

N2

∑
i,j

⟨σiσj⟩, (4)

where N is the total number of atoms. Compared to
the ground state expectation (solid gray curve, Fig. 2d),
we find that the data (green circles, Fig. 2d) exhibit
smaller values of the order parameter, with a difference
that becomes more pronounced after the critical point.
Moreover, we observe that time-dependent simulations
(dotted gray line, Fig. 2d, see Supplementary Material),
which account for non-adiabatic errors, yield an order
parameter that is quite close to the ground state value.
This suggests that the length scale suppressing the cor-
relations originates from decoherence at both the critical
point and in the AFM.

Thus, one might naturally expect that the correlations
at the critical point are governed by a decay profile of
the form [9–11],

⟨σ0σj⟩ ∝ δ
−2∆

1D
σ

j e−δj/ξd . (5)

This is indeed borne out by the data (inset, Fig. 2f).
In particular, we extract a decoherence-induced length
scale ξd/a = 13.2+5.7

−3.6, which matches that observed in
the AFM (Fig. 2e). As depicted in Fig. 2f, by ac-
counting for this exponential decay, we observe the char-
acteristic power-law decay of critical correlations, with

∆1D

σ = 0.128(37), in excellent agreement with the CFT
prediction.

Three remarks are in order. First, to investigate the
robustness of our observed power-law and to ensure a sep-
aration of scales between the system size and the deco-
herence length scale, we prepare and study critical states
on a larger N = 40 atom ring (Fig. 1b). We find that the
correlations follow the same functional form, and that the
measured scaling dimension and decoherence length scale
are identical. Second, while we have focused on decoher-
ence as the dominant source of correlation suppression,
one can also access regimes where non-adiabatic effects
are manifest (see Supplementary Material). Third, we
posit that the dominant experimental decoherence mech-
anisms are [43–45]: (i) intermediate-state scattering asso-
ciated with our two-photon excitation scheme and (ii) the
finite lifetime of the Rydberg state. We incorporate these
effects into a large-scale stochastic wave-function simu-
lation that utilizes independent experimental measure-
ments of these decoherence rates. Somewhat remarkably,
this captures—without any additional free parameters—
both the decay of correlations (dashed gray, Fig. 2c) as
well as the suppression of the order parameter (dashed
gray, Fig. 2d).

Tuning open system criticality—Our observations sug-
gest that the principal effect of decoherence on quan-
tum criticality is to introduce a single length scale into
an otherwise scale-invariant state [11]. This provides a
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simple conceptual framework for extracting the universal
scaling dimensions from open quantum systems at crit-
icality. To investigate the generality of this framework,
we directly tune the amount of decoherence in our sys-
tem, by either increasing the total ramp time (Fig. 3a)
or the intermediate-state scattering rate (Fig. 3b). In all
cases, the correlations decay as in Eqn. 5, but with dif-
ferent decoherence length scales (Fig. 3a,b). Despite a
relatively large range of values for ξd, the extracted scal-
ing dimension remains unchanged. This is evinced by the
collapse of the data onto the universal Ising CFT power-
law (across both ramp times and scattering rates) once
ξd is accounted for (Fig. 3c).

CRITICAL CORRELATIONS IN 2D

We now turn to the exploration of quantum criticality
in two spatial dimensions. Working with a square lat-
tice and a blockade radius of Rb/a = 1.25 (Fig. 4a), our
model exhibits two phases analogous to the 1D case: at
low detuning, a trivial paramagnet, and at high detun-
ing, a Z2 checkerboard state that spontaneously breaks
translation symmetry [39, 40]. The transition between
these two phases is in the (2+1)d Ising universality class.
Its primary σ field can be associated with a microscopic
operator residing on the lattice bonds (inset, Fig. 4a).
Namely, between two neighboring lattice sites at coordi-
nates (xi, yi) and (xj , yj), the operator is given by

σi,j = (−1)xi+yi(ni − nj). (6)

We begin by utilizing optimized ramps to prepare the
ground state (on a 7×7 array) at various detunings (in-
set, Fig. 4b). Due to the odd-length, open-boundary
condition geometry, there is a unique ground state in
the ordered phase with ⟨σ⟩ ≈ +1 [panel (ii) in Fig 4b],
which exhibits a checkerboard pattern of ⟨ni⟩ [panel (i)
in Fig 4b].

Next, we employ the same Kibble-Zurek-like proce-
dure to experimentally locate the critical point, finding
∆c/Ω = 1.03(11) (Fig. 4c). The (2+1)d Ising CFT pre-
dicts that correlations at the critical point should decay

as ⟨σmσn⟩ ∝ δ
−2∆2D

σ
mn , where δmn is the Euclidean dis-

tance between bond centers m and n. Unlike in the 1D
case, the 2D critical exponent ∆2D

σ ≈ 0.518149 is not
known exactly, but has been estimated to high precision
using conformal bootstrap techniques [46].

We adiabatically prepare the critical ground state for
both 7 × 7 and 9 × 9 square arrays. In this setting, we
are able to directly observe real-space power-law corre-
lations unimpeded by decoherence (Fig. 4d). This is en-
abled by two facts: (i) the larger scaling dimension causes
power-laws to manifest at shorter distances, and (ii) the
previously-extracted decoherence length scale, ξd ≈ 13,
exceeds our linear system size. A simultaneous fit of both

system sizes yields ∆2D

σ = 0.59(9); note that in order
to minimize boundary effects, we only include σ fields
within the bulk (inset, Fig. 4a). While our measured
scaling dimension is slightly larger than the CFT pre-
diction, it agrees with ground state DMRG calculations.
In fact, the correlation function matches the simulations
within statistical error for all distances; this suggests that
the discrepancy with the CFT prediction is a finite-size
effect.
Boundary phase transitions—While we have focused

thus far on bulk criticality, the boundary itself can also
exhibit rich physics in two dimensions. At Rb/a = 1.25,
we observe that the bulk and boundary order simultane-
ously (Fig. 4c)—a so-called ordinary transition [12–14].
However, this is not the only possibility. In an alter-
native case, known as a surface transition, the bound-
ary orders independently prior to the bulk phase tran-
sition [12]; for example, this is expected to occur when
Rb/a = 1.35 (Fig. 4a) [31].
To investigate this, we prepare states at various detun-

ings along both the ordinary (Rb/a = 1.25) and surface
(Rb/a = 1.35) cuts depicted in Fig. 4a. We measure the
order parameter (Eqn. 4), but now separately average
over bonds either within the bulk, ⟨Ô⟩, or at the bound-
ary, ⟨Ô⟩∂ . Along the surface cut (Fig. 4f), the growth of
⟨Ô⟩ exhibits a discernible lag behind ⟨Ô⟩∂ , particularly
when compared to the growth observed along the ordi-
nary cut (Fig. 4e). This is consistent with the expected
surface transition [31].
A direct comparison of the spatial correlations along

the cuts further illustrates the influence of the two tran-
sitions (Fig. 4g,h). First, we examine the boundary cor-
relations, ⟨σmσn⟩∂ , at the ordinary and surface critical
points (stars, Fig. 4a). At the surface transition, ⟨σmσn⟩∂
exhibits a slower decay with larger absolute values com-
pared to the ordinary transition; this is in qualitative
agreement with the theoretical prediction that the scaling
dimension of the surface transition is significantly smaller
than that of the ordinary transition (see Supplementary
Material). However, our ability to quantitatively deter-
mine this scaling dimension is constrained by the pres-
ence of strong corner effects.
For contrast, we also analyze the bulk correlations

⟨σmσn⟩ along ∆/Ω = 1.5 (dashed gray, Fig. 4a), which
lies within the ordered phase for the ordinary cut, but
should only have boundary order for the surface cut. In-
deed, as shown in Fig. 4h, the ordinary cut exhibits a
plateau in the spatial correlations at large distances in-
dicative of an ordered bulk, while the surface cut exhibits
rapidly decaying correlations.

OUTLOOK

Looking forward, our work lays the foundation for sev-
eral directions. First, producing larger square arrays



6

d

a b

e

Ordinary cut

Ground population

0

1 1

-1

= 0.63

= 0.95

= 1.88
(i) (ii)

= 0.59(9)

c

1.3

St
ria

te
d 

Surface cut

Ordinary cut

Bo
un

da
ry

Ordinary cut Surface cut

g Boundary: Critical point

Bulk: = 1.5

Ordinary cut
Surface cut

Surface cut
Ordinary cut

Boundary
Bulk

Sweep rate

Boundary
Bulk

f

0.1

0.2
0.3
0.4

0.2

0.3
0.4

Boundary
Bulk

h
2D

Boundary
Bulk

-

FIG. 4. Probing critical Ising correlations and surface transitions in a 2D square lattice. Circles (7 x 7), stars
(7 x 7 at the critical point) and squares (9 x 9) denote experimental measurements, with shaded regions representing 1-σ
bootstrap errors. (a) A schematic for the 2D phase diagram, adapted to the finite system size. The shaded area labeled
boundary marks the region of a boundary-ordered phase with a disordered bulk. Red stars indicate the location of the critical
point along the two cuts. Gray dashed line indicates ∆/Ω = 1.5. Inset: The σ fields live on lattice bonds, both along the
boundary (purple) and within the bulk (orange). δmn denotes the Euclidean distance between two nearest σ fields. (b) σ field
correlation measurements around the critical point along the ordinary cut, with measured ground state population (i) and σ
field (ii) across the phase transition. The critical spatial correlation is highlighted by the star marker. Inset: 2D phase diagram
schematic with markers indicating the measurements’ locations. (c) Peak location of susceptibility χ along the ordinary cut
at different sweep rates with boundary and bulk analyzed separately. Gray dashed line marks the location of gap minimum.
(d) The measured critical σ field correlation within the bulk exhibits a power-law decay with an exponent of 2∆σ, shown by
the orange solid line. The gray solid line represents the ground state simulation using experimental parameters. (e, f) Order

parameter analyzed independently for the bulk (⟨Ô⟩) and the boundary (⟨Ô⟩∂) across the phase transition along the ordinary
cut (e) and the surface cut (f). (g, h) Measured σ field spatial correlations along the boundary (g) at the critical point for the
two cuts (marked by red stars in (a)), and within the bulk (h) at ∆/Ω = 1.5 (marked by the gray dashed line in (a)). Dashed
lines are guides to the eye.

and improving coherence times should allow direct ac-
cess to various boundary universality classes (surface, or-
dinary, and extraordinary) in experiment. Second, bulk
ground state physics is enriched by the presence of geo-
metric frustration: odd-length rings support a W -state
in the ordered phase [47], and in two dimensions one
can find 3D XY critical points—with an associated novel
extraordinary-log boundary universality class [48]—as
well as transitions into gapless and topological spin liq-
uids [38]; each of of these should be possible to study us-
ing the same adiabatic preparation framework. Finally,
quantum critical states are expected to display rich dy-
namics when out of equilibrium [49, 50], including holo-
graphic signatures of emergent gravitational physics [51].
Such topics have been extensively studied theoretically
in (1+1)d CFTs—the extension to (2+1)d is non-trivial,
and would benefit greatly from experimental study.
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SUPPLEMENTARY MATERIAL

Experimental system

Optical tweezer arrays

We load optical tweezer arrays of up to 180 Cs atoms
from a magneto-optical trap with a loading probability
of 40 − 60% per site. The tweezer traps have a loading
trap depth of about 2π × 13 MHz with radial and axial
trap frequencies of about 2π × 90 kHz and 2π × 14 kHz,
respectively.

We generate arbitrary-geometry tweezer arrays with a
Hamamatsu X15213-03R spatial light modulator (SLM)
focused through a Jenoptik microscope objective (NA =
0.55). The SLM applies a phase hologram to the laser
wavefront, calculated using the phase-fixed weighted
Gerchberg-Saxton (WGS) algorithm [52]. We correct for
optical aberrations by adding Zernike polynomials with
variable amplitudes to the wavefront [18]. This process
increases the trap depth by approximately 10%. We fur-
ther improve trap depth uniformity to under 2% (stan-
dard deviation/mean) through the adaptive-WGS algo-
rithm. The SLM is illuminated by up to 5 W of 1064 nm
light generated by a fiber amplifier (Precilasers, YFA-SF-
1050-50-CW) seeded by a low-noise narrow-line Coherent
Mephisto MOPA laser.

After stochastically loading the SLM tweezer array, we
use mobile tweezers at 1038 nm created by crossed AA
Optoelectronics DTSX-400-1030 acousto-optical deflec-
tors (AODs) to rearrange atoms into a defect-free pat-
tern of our choice. The rearrangement tweezers are gen-
erated by a fiber amplifer (Azur Light Systems, ALS-IR-
1040-20-A-SF) seeded by a home-build external cavity
diode laser using an Innolume gain chip (GM-1030-130-
PM-200).

Rearrangement

Atoms are imaged via fluorescence imaging on our
Andor electron-multiplying charge-coupled-device (EM-
CCD) camera, after which the images are processed and
the correct moves are determined. During rearrange-
ment, we grab atoms using AOD tweezers at approxi-
mately twice the trap depth of the static SLM tweezers.
The AOD tweezers are turned on and off in about 200 µs
and moved at about 110 µm/ms.

We design our rearrangement algorithms to operate
on grids, a natural capability of AODs. The sequence of
atom moves and ejections must be tailored to the geome-
try of the SLM tweezers. Each SLM array includes both
‘target’ sites belonging to the desired defect-free pattern
and ‘reservoir’ sites supplying additional atoms to fill un-
loaded target sites. In both 1D and 2D, we are careful

to minimize the number of grab and drop events of the
atoms.
1D rearrangement procedure. For our 1D experiments

on a ring, we load additional atoms into rows and
columns of traps situated around and inside the ring to
serve as a reservoir. This reservoir is designed to maxi-
mize connectivity along a row/column, reduce redundan-
cies, and enforce a minimum spacing between traps (see
Fig. 5). While the AOD is capable of simultaneously
producing multiple tweezers, we only use a single mobile
tweezer to rearrange atoms on a ring. This minimizes
atom heating due to beat-note frequencies of adjacent
tweezers moving over a non-uniform grid, which would
otherwise cause trap depth modulations on the order of
our trap frequencies.
2D rearrangement procedure. For our 2D experiments,

we rearrange over a rectangular array. Because of the
regular geometry, atoms of a given row or column can
be simultaneously rearranged by AOD tweezers without
low frequency beatnotes, allowing us to move atoms in
parallel without substantial heating (see Fig. 6).

Rydberg laser system

We coherently excite atoms to the Rydberg state us-
ing a two-photon transition via the intermediate state
|7P3/2⟩, with counter-propagating laser beams at 455 nm
and 1062 nm. The Rydberg excitation beams are shaped
into elliptical Gaussian beams to improve their intensity
uniformity across the array, with (ωx, ωy)455 = (87, 137)
µm and (ωx, ωy)1062 = (64, 208) µm at the position of
the atoms. In a typical experiment, the powers of each
laser are chosen to achieve single-photon Rabi frequen-
cies of (Ω455,Ω1062) ≈ 2π × (80, 42) MHz. We operate
at an intermediate state detuning of 1.06 GHz, and the
two-photon Rabi frequency ranges from 1 to 1.6 MHz.
The 455 nm laser is a frequency-doubled Ti:Sapphire

laser from M Squared. The fundamental frequency is
locked to an ultra-low-expansion (ULE) cavity (Notched
cavity from Stable Laser Systems) with finesse F = 24000
at 911 nm. The 1062 nm laser is an external cavity quan-
tum dot laser (Time-base ECQDL-200FC) locked to the
same ULE cavity with finesse F = 26000 at 1062 nm.
To minimize the phase noise of the 1062 nm laser, we
inject the cavity-filtered transmitted light of the ULE
cavity (57 kHz linewidth), into a laser diode (EYP-RWL-
1060-00100-1300-SOT01-0000). The output of this laser
diode is further amplified by a 50 W fiber amplifier (Pre-
cilasers, YFA-SF-1050-50-CW). Phase noise suppression
enhances the single-atom ground-Rydberg Rabi coher-
ence time from 4 µs to approximately 20 µs.
We use acousto-optical modulators (AOM) to dynam-

ically change the detuning and power of each laser. We
change the 455 nm laser power and the two-photon de-
tuning using an AOM (AA Optoelectronics, MQ180-
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A0,25-VIS) in double-pass configuration, while the power
of the 1062 nm laser is changed with a single-pass AOM
from Gooch and Housego. During a Rydberg excita-
tion sequence, the 1062 nm laser is held at constant
amplitude and frequency while the 455 nm laser ampli-
tude and frequency are varied. Both lasers are intensity-
stabilized using feedback from a photodiode and a home-
built proportional-integral-derivative circuit. Due to the
short pulse length for the blue laser, a sample and hold
circuit is additionally used for intensity stabilization,
with a sample period that occurs within 20 ms of the
pulse.

Adiabatic state preparation

State initialization

Following rearrangement, we optically pump atoms to
the ground state |6S1/2, F = 4,mF = 4⟩ in an 8.8 G
magnetic field. We perform 3D Raman sideband cool-
ing to reduce the average motional quantum number n
to less than 0.1 [34], taking approximately 100 ms. Fol-
lowing Raman cooling, we adiabatically lower the trap in
about 100 µs before turning it off completely during the
Rydberg excitation. Although releasing the atom from
a lower trap depth results in lower kinetic energy, the
position distribution is wider resulting in greater sensi-
tivity to static positional disorder. However, at a higher
trap depth, releasing the atom results in greater kinetic
energy, so the atom will move more during the Rydberg
excitation. The optimal trap depth for release is numer-
ically determined to be 2π × 1.4 MHz with radial and
axial trap frequencies of 2π × 30 kHz and 2π × 4.7 kHz,
respectively, by minimizing the atom position distribu-
tion σr + σv × tevolve during state evolution, where σr
and σv is the spread of the initial atom position and mo-
mentum upon trap release.

State evolution - Local linear adiabatic (LILA) ramp

Consider a system with the Rydberg Hamiltonian
(Eqn. 1 in the main text) that is evolving in time ac-
cording to a time-dependent detuning ∆(t) that starts
at ∆(0) = ∆0. According to the adiabatic theorem, the
system will remain in the ground state of H(t) at a later
time t, provided that the evolution of the Hamiltonian is
slow enough to satisfy [53–55]

min
t∈[0,T ]

∣∣∣Eg(t)2
∆̇(t)

∣∣∣ ≫ 1. (7)

Here Eg(t) denotes the time-dependent gap between the
ground state and the first excited state of the instanta-
neous H(t). Our goal is to maximize min

t∈[0,T ]
γ(t), where

γ(t) =
E2

g

∆̇
for a fixed time T , which is realized when

γ(t) = γ is a constant. Therefore, our task is to find a
ramp profile ∆(t) that fulfills the condition

d∆

dt
=
E2
g(∆(t))

γ
. (8)

with two boundary conditions ∆(0) = ∆0 and ∆(T ) =
∆c. We solve this problem on a equal-spacing discretized
grid in detuning with N points. We set ∆k=0 = ∆0 and
∆k=N = ∆c, and (∆k+1−∆k)T ≪ 1, where T is the total
time. The corresponding time spacings can be solved for,
and we obtain

∆tk =
T

E2
g(∆k)

n∑
k=0

1/E2
g(∆k)

, (9)

γ =
T

d∆
n∑
k=0

1/E2
g(∆k)

. (10)

This formula allows us to numerically evaluate an optimal
ramp profile ∆(t) given a known gap profile Eg(∆), an
initial detuning ∆0 and final detuning ∆c, and a fixed
total time T .
However, this solution requires knowledge of the gap at

all detunings, which can be computationally expensive.
To reduce the computational cost, we approximate the
gap profile as linear around the critical detuning ∆c:

Eg(∆) = E0 +
Ec − E0

∆c −∆0
(∆−∆0). (11)

This results in an analytic solution:

∆(t) =
E0∆ct+ Ec∆0(T − t)

E0t+ Ec(T − t)
, (12)

γ =
E0EcT

∆c −∆0
, (13)

which is the optimized ramp profile that is used through-
out our experiments.

Rydberg detection

To detect the state of our atoms, we apply a microwave
pulse [18, 36] at approximately 9.16 GHz, followed by a
rapid turn on of the tweezer traps, expelling atoms in the
Rydberg state. Ground state atoms are recaptured, so
subsequent imaging of these atoms provides a measure-
ment of the Rydberg population of each site. There are
two sources of error in this procedure. First, a false posi-
tive error, where a ground state atom has been lost, and
is misinterpreted as a Rydberg atom. Second, a false
negative error, where a Rydberg atom has decayed to
the ground state and is interpreted as a ground state
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atom. We address the first error by not analyzing snap-
shots with blockade violations (See later Section on data
post-selection). For the second error, we either apply a
single Rydberg π pulse or two Rydberg π pulses before
state detection, to separate the contribution from the
false negative detection error and the π pulse error.
The detailed procedure is outlined as follows. We first

define three quantities:

• 1-η0: False positive detection error where a ground
state atom is detected as a Rydberg atom.

• p: Rydberg excitation probability after a π pulse.

• ϵ: False negative detection error where a Rydberg
atom is detected as a ground state atom.

We determine η0 = 0.980(8) via a release-recapture ex-
periment. To further determine ϵ, we additionally per-
form two experiments. In the first experiment, we apply
a Rydberg π pulse and then detect the ground state pop-
ulation ng1 = 0.053(14). In the second experiment, we
apply two Rydberg π pulses and then do the same detec-
tion for the ground state population ng2 = 0.86(1). With
the three quantities defined above, we end up with two
equations:

η0(1− p) + ϵp = ng1 (14)

η0(p
2 + (1− p)2) + 2ϵp(1− p) = ng2 (15)

We then solve the above equations to estimate ϵ. The er-
rors in ϵ are done by propagating the standard deviation
of the known quantities η0, ng1 and ng2. This calibration
procedure yields our estimate of the error, which is less
than 0.015. We note that to achieve a good calibration
of η0, ng1 and ng2, the above experiments are repeated
by more than 10000 times. The simulation results pre-
sented in this work do not include the false negative error
correction.

Additional Sources of Imperfection

Non-adiabaticity

When the ramp speed exceeds the time scale deter-
mined by the excitation gap, a finite density of excita-
tions above the many-body ground state becomes pop-
ulated. Energy gaps decrease in system size as 1/L for
1D [56], necessitating a longer time scale to ensure adia-
baticity in larger systems. The challenge of adiabaticity
becomes more pronounced for ordered state preparation,
as it requires passing through the gap minimum. To cap-
ture this effect, we introduce an additional length scale
ξad which limits long-distance correlations.

Comparing 24-atom and 40-atom correlation measure-
ments with a fixed-time LILA ramp in the disordered
(PM) and AFM phases illustrates the above insights. In
the PM phase, both the 24-atom and 40-atom correlators
exhibit similar behavior (Figure 7b). However, in the
AFM phase, the 40-atom correlator decays more rapidly
than the 24-atom correlator, resulting in a noticeable de-
viation at greater distances. This trend can be captured
by unitary numerical simulations using LILA ramps, in-
dicating that ξad hinders order parameter growth in the
40-atom system and leads to a faster correlator decay
in the AFM phase. An exponential fit to the 40-atom
correlator data in the AFM phase yields a smaller value
(9.8(12)) compared to the decoherence length scale ξd,
confirming the contribution from ξad.

Atom motion

Motion of the atoms during the interaction time
can cause dynamical variation of interatomic distances,
which in turn modifies the distance-dependent interac-
tion strength between atoms. We mitigate motional ef-
fects by means of Raman sideband cooling (RSC) into
the tweezers. We experimentally evaluate the effect of
RSC by comparing the measured ⟨σ0σj⟩ correlator in the
AFM phase with and without performing RSC (Figure 8
c). Exponential fits show an increase in ξd when RSC is
performed, confirming its benefits.

Interaction inhomogeneity

Optical aberrations in our tweezer system can cause
additional non-uniformities in the atomic spacings, lead-
ing to a static interaction inhomogeneity. We measure
this by calibrating pairwise interaction energies, employ-
ing the method from [57]. We rearrange atoms into
pairs that are within the blockade radius, and use a
pulse to excite them to the symmetric excited state
|W ⟩ = 1√

2
(|gr⟩ + |rg⟩). A second pulse is applied with

variable detuning. When the detuning ∆ = V , we ob-
serve a resonance corresponding to double-excitation into
|rr⟩, allowing us to extract the value of V . Using this ap-
proach, we calibrate the static interaction inhomogene-
ity (standard deviation/mean) to be 26% (24-atom ring),
20% (40-atom ring), and 14% (rectangular array). We
numerically assess the impact of static interaction inho-
mogeneity and determine that it influences the location
of the gap minimum, and does not compromise the fi-
delity of our critical state preparation. We thus take this
inhomogeneity into account in our gap profile calculation
and compare it to the experimentally determined critical
point.
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Data Processing and Analysis

Locating the critical point

We locate the critical point by experimentally deter-

mining the peak of susceptibility χ = d⟨n⟩
d∆ as a function of

detuning [18, 42]. However, extracting this peak is chal-
lenging due to its asymmetric shape, which hinders ac-
curate extraction using commonly employed polynomial
or Gaussian fit procedures. Furthermore, the location of
the peak is susceptible to errors induced by the numerical
derivative process. We develop a scheme that does not
assume a symmetric peak and is more robust to noise,
which includes data smoothing and interpolation. The
parameters of the data smoothing and interpolation steps
are chosen such that it works effectively even when re-
ducing the number of data points of the numerical results
(about 300) to match the typical experimental condition
of about 50 data points. The key steps of our scheme to

extract a χc =
(
d⟨n⟩
d∆

)
max

are outlined as follows:

1. Smooth the data for ⟨n⟩ as a function of ∆. We
choose a relatively small smoothing window size in
the Savitzky-Golay filtering algorithm to identify
and retain local features.

2. Interpolate the smoothed data (orange curve in Fig.
9a). The interpolation step increases the number of
data points and helps stabilize the process of taking
the numerical derivative.

3. Take the numerical derivative with the central dif-
ference method to obtain the curve of χ as a func-
tion of ∆.

4. Smooth the obtained χ as a function of ∆ and
identify the peak of χ and corresponding ∆max, as
shown in Fig. 9b. In this step we choose a relatively
large smoothing window size in the Savitzky-Golay
filtering algorithm so that we are less vulnerable to
oscillations originating from experimental noise.

This multi-step scheme allows us to accurately deter-
mine location of the maximum susceptibility ∆max. We
apply the scheme to the data obtained at various ramp
speeds to further confirm the slowest ramp is in the adi-
abatic region, allowing us to determine the critical de-
tuning ∆c. Furthermore, in faster ramps, the Rydberg
population lags behind the expectation from the ground
state, which results in a susceptibility that peaks beyond
the true critical point.

Thus far, we have focused on sweeping the detuning
from the paramagnetic (PM) to the antiferromagnetic
(AFM) phase. As a method to locate the critical point,
Ref. [42] suggests using a ramp from the AFM to the
PM phase, where an adiabatic ramp would also result in
a peak susceptibility at the critical point. Faster ramps

would once again result in a lagging Rydberg population,
and thus a susceptibility which peaks below the true crit-
ical point. We perform the same measurement in a back-
ward ramp scenario, where we adiabatically prepare the
AFM state and then linearly sweep down the detuning at
different rates. We observe the inverse trend of ∆max as
a function of sweep rate compared to the forward ramp,
consistent with the prediction described in [42] under the
presence of imperfect AFM state preparation (Fig. 9c).

Postselection of Data

In our experiment, we post-select all our data on suc-
cessful rearrangement. However, there is approximately
3% loss per trap from the fluorescence imaging, and an
additional 2% loss per trap from collisions with the back-
ground gas during RSC, resulting in a total 5% loss per
trap during state initialization before performing our Ry-
dberg experiments. This loss introduces unknown holes
into the perfect 1D ring or 2D rectangular array. These
defects are hard to distinguish from Rydberg atoms,
which are also detected as loss. However, we note that
when Rydberg atoms are created in our sequences, they
are more likely to be created at edges or where there
are fewer neighboring atoms. Thus, holes due to atom
loss are more likely to have neighboring holes that result
from an atom being promoted to a Rydberg state. In our
data analysis, this creates an atom configuration which
violates the so-called Rydberg blockade; namely, there
appear to be two or more Rydberg excitations within a
blockade radius. To reduce the impact of loss on our
data, we postselect on snapshots that do not contain any
blockade violations.
To justify the above approach, we confirm numerically

that postselection of blockade-violating snapshots does
not bias our results. We first calculate the percentage
of snapshots in the critical state to contain blockade vi-
olations to be 8% (24-atom ring), 10% (40-atom ring),
35% (7 × 7 array), and 52% (9 × 9 array). Although
the percentage is high in 2D, the effect is smaller com-
pared to 1D where holes change the boundary conditions.
We calculate the σ field correlation of both the entire
wavefunction and the portion that contains no blockade-
violations. Comparing these two indicates only a minor
deviation, suggesting that blockade-violating snapshots
do not contribute significantly to this particular observ-
able (Figure 10 a, b). Furthermore, we can account for
atom loss in simulations by averaging over arrays with
defects. These simulations agree well our raw data with-
out blockade-violation post-selection, verifying our un-
derstanding of the impact of holes on our critical state
(Figure 10 c). All data reported in the main text has
been post-selected to exclude blockade violations, with
the exception of data used for locating the critical point
via linear ramps.
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Bootstrap Errorbars

In this paper, we use bootstrap methods [58] to esti-
mate errorbars. From N snapshots of a particular exper-
iment, we sample N times with replacement. We then
proceed to calculate all observables, such as σ field cor-
relators, and perform all required fits. We repeat this
procedure for B (typically ≥ 1000) bootstrap samples,
and enumerate the calculated values. The reported value
for the quantity is then taken to be the mean of the boot-
strapped values with an errorbar given by the standard
deviation. If the distribution of the bootstrapped values
is asymmetric, we report the median value as our best
estimate of the quantity with an errorbar determined by
the 15.8th and 84th percentile of the distribution. This
procedure results in the asymmetric errorbar in ξd/a re-
ported in the main text, extracted from the power-law
exponential fits (Fig. 2e and Fig. 3a,b). For all quanti-
ties reported in this work, including ∆1D

σ , ∆2D

σ and ξd/a,
we incorporate both the bootstrap and fitting errorbars.

Boundary phase transitions in 2D

In the main text, we detailed the experimental obser-
vation of two boundary universality classes: the surface
class, where the boundary orders independently of the
bulk, and the ordinary class, where the bulk and bound-
ary order simultaneously [12–14]. We noted that the de-
cay of the two-point correlator σi,j (Eq. 6) was slower for
the surface transition than the ordinary transition. This
is qualitatively in agreement with theoretical expecta-
tions. As σi,j is odd under the Z2 Ising symmetry of the
transition, we should thus expect that asymptotically its
decay is governed by the scaling dimension the of most
relevant odd CFT field on the boundary. For the surface
transition, this is just the scaling dimension of the usual
(1+1)d Ising universality class spin field, ∆1D

σ = 1/8.
By contrast, for the ordinary transition the scaling di-
mension for the most relevant odd boundary field has
instead been calculated via conformal bootstrap to be
much greater: ∆∂zσ̂ = 1.276(2) [14].

Numerical studies

We utilize matrix product state (MPS) methods for
numerical simulations throughout our work, using the
finite-size density matrix renormalization group (DMRG)
algorithm for ground state studies and the two-site time-
dependent variational principle (TDVP) method for time
dynamics [59–61].

Stochastic wavefunction numerics

To capture the openness of our quantum system, we
perform simulations of its time dynamics incorporating
the two most relevant sources of single-body decoherence
in our experiment, intermediate-state scattering and Ry-
dberg state decay. This is generically described by the
Lindblad master equation,

dρ

dt
= − i

ℏ
[H, ρ] +

∑
j

(
cjρc

†
j −

1

2

{
c†jcj

})
, (16)

where ρ is the density matrix, H is the system Hamilto-
nian, and the cj are the jump operators describing the
decoherence channels.

We model the Rydberg decay process using the jump
operators cdecayi =

√
γdecay |g⟩i i⟨r| for each atom i,

where 1/γdecay = 71.44µs is the lifetime of the Ryd-
berg state. To model intermediate-state scattering, we
first quantify the two-photon excitation process as a
driving field Ωblue = 2π × 80.04MHz from the ground
state |g⟩ to an intermediate state |e⟩ with a detun-
ing δ = 2π × 1.058GHz, and a second driving field
ΩIR = 2π × 42.3MHz from |e⟩ to the Rydberg state
|r⟩. The intermediate state decays at a rate γe =
2π×1.23MHz, which we then model with the jump oper-
ators

√
γe |g⟩i i⟨e| for each atom i. Next, we perform adi-

abatic elimination on the intermediate state |e⟩, leading
to an effective Lindbladian with a two-photon Rabi fre-
quency Ω = ΩblueΩIR

2δ = 2π × 1.6MHz and effective jump

operators cscatti =
√

γe
4δ2 (Ωblue |g⟩i i⟨g|+ΩIR |g⟩i i⟨r|) for

each atom i. The intermediate-state scattering pro-
cess can be summarized using an effective rate γscatt =
γe
4δ2

(
Ω2

blue +Ω2
IR

)
= 1/70.69µs, which is of a similar

timescale to the Rydberg lifetime. We note that the pres-
ence of these two decoherence channels has a significant
effect on the dynamics of the system, which occurs within
a time period of 7µs.

We implement open-system time evolution using the
stochastic wavefunction framework, where we stochasti-
cally generate quantum trajectories of the system to pro-
duce an ensemble of pure states that can be averaged over
to recover the behavior of the density matrix obtained
using the Lindblad master equation. Under decoherence,
quantum state evolution is modified from the Schrödinger
equation such that the system evolves under a non-
Hermitian effective Hamiltonian Heff = H − iℏ

2

∑
j c

†
jcj

and, for every jump operator cj , the wavefunction |ψ⟩
stochastically “jumps” to

cj |ψ⟩
⟨ψ|c†jcj |ψ⟩

with probability den-

sity ⟨ψ| c†jcj |ψ⟩ in time. In our numerics, we average over
O (100) such trajectories per simulation.
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Energy Field

In the main text, we focus on the primary field σ, cor-
responding to the spin field of the Ising CFT. The other
primary field ϵ, known as the energy field, can be simi-
larly represented, at the leading order in 1D, by a micro-
scopic lattice operator [41]

ϵi+1/2 = (ni + ni+1)− ⟨n⟩. (17)

The two-point correlator ⟨ϵ1/2ϵj+1/2⟩ decays as a power
law

⟨ϵ1/2ϵj+1/2⟩ ∝ δ
−2∆

1D
ϵ

j , (18)

where ∆1D

ϵ = 1, predicted by the (1+1)d Ising CFT.

Similar to the case of the σ field, our adiabatic state
preparation protocol provides direct access to the ϵ field.
As shown in Fig. 11a, we observe a pronounced decay
of ⟨ϵ1/2ϵj+1/2⟩. However, two main challenges prevent us
from determining ∆1D

ϵ experimentally. First, this large
scaling dimension ∆1D

ϵ leads to a more rapid decay of
the ⟨ϵ1/2ϵj+1/2⟩ compared to ⟨σ0σj⟩. The measured two-
point correlator signal quickly drops to the noise floor.
Increasing the system size does not help in this scenario
(Fig. 11a). Second, in contrast to the 2D case reported
in the main text (∆2D

σ ≈ 0.5), the 1D geometry has lim-
ited access to the spatial separations between the pri-
mary fields. Therefore, insufficient measurement points
are available to fit a power law before the signal descends
below the noise floor. In addition to 1D, the (2+1)d Ising
CFT predicts ∆2D

ϵ ≈ 1.4. This larger scaling dimension
makes it challenging to observe the power law decay even

in the 2D rectangular array where more spatial separa-
tions between the primary fields are accessible.

2D boundary decoherence

The odd-length, open boundary condition in 2D ex-
plored in this work explicitly breaks the Z2 symmetry and
leads to a unique ground state in the ordered phase. Be-
cause of this, the one-point function ⟨σ⟩ is non-vanishing.
It transitions from 0 in the fully disordered phase to 1 in
the perfect checkerboard phase (panel (ii) in Fig. 4b).
We measure ⟨σ⟩ across the critical point (Fig. 11b),
and separately average over bonds either within the bulk
(⟨σ⟩) or along the boundary (⟨σ⟩∂). A comparison be-
tween our measurements and ground state expectation
(solid gray line in Fig. 11b) reveals discrepancies. In par-
ticular, ⟨σ⟩∂ deviates more compared to ⟨σ⟩. Meanwhile,
a time-dependent simulation using LILA ramp that ac-
counts for non-adiabatic errors yields a result that aligns
well with the ground state expectation (dotted gray line
in Fig. 11b). This indicates that decoherence is the pri-
mary factor and has a more pronounced effect along the
boundary.
This observation stems from the presence of strong

corner effects. Atoms located at the corners have fewer
neighbors, making them more readily promoted to Ryd-
berg states. Once promoted, these atoms act as external
symmetry-breaking fields that drive the growth of the
one-point function and enhance the boundary symmetry-
breaking in our odd-length geometry. This enhanced
symmetry-breaking along the boundary is additionally
supported by the greater two-point correlator along the
boundary in comparison to that within the bulk (Fig.
4e). These enhanced correlations are themselves more
prone to the decoherence-induced length scale ξd.
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a) b) c) d)

FIG. 5. Rearrangement procedure in 1D for a 40-atom ring. Blue squares denote locations of SLM traps, and orange circles
denote the locations of atoms. Each target site on the ring is associated with a reservoir row or column. (a) Row by row,
we shuffle atoms horizontally to columns that need additional atoms to reach their targets. Green arrows denote atoms that
are moved in order to fill the deficient red column. Orange arrows denote atoms that are moved to more central columns to
contribute more atoms to the next step. We note that if all columns have a sufficient number of atoms, this step can be skipped.
Furthermore, not all rows will be moved. b) Column by column (within the green rectangle), we shuffle atoms vertically to
their target sites, ejecting any unneeded atoms and also filling rows that need additional atoms. Importantly all atoms are now
in the central rows which will be targeted in the next step. c) Row by row (within the red rectangle), we place the remaining
atoms into the target sites, while ejecting unneeded atoms. d) After the previous rearrangement steps, a defect free ring is
achieved.

a) b) c)

FIG. 6. Rearrangement procedure in 2D for a 9x9 rectangular array. Blue squares denote locations of SLM traps, and orange
circles denote the locations of atoms. a) Row by row, we shuffle atoms horizontally to columns that need additional atoms and
eject unnecessary atoms (red arrows). Note that atoms in the final target region are moved as little as possible b) We move
all atoms downward to the bottom of the array c) After the previous rearrangement steps, a defect free rectangular array is
achieved.
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FIG. 7. The effect of non-adiabaticity. Circles (24-atom) and squares (40-atom) denote experimental measurements, with
the shaded region representing 1-σ bootstrap error. Gray solid, dotted, and dashed lines indicate ground (DMRG), unitary,
and stochastic wave-function simulation results using experimental parameters. (a) (i) Gap profiles for 24-atom and 40-atom
systems. The vertical gray dashed line denotes the location of the gap minimum in the 24-atom system. Markers in the PM
(AFM) phase correspond to measurements in b (c). (ii) A schematic showing the dependence of ξad on system size using
the same LILA ramp for state preparation. (b) and (c): σ field correlation measurements in the PM and AFM phases. The
influence of decoherence in addition to non-adiabaticity is shown by a comparison between unitary and stochastic wavefunction
simulation in (c), indicating that the decoherence affects both 24-atom and 40-atom systems similarly via ξd.

No cooling With cooling

ca

b

d

FIG. 8. Atom motion. Circles denote experimental measurements, with the shaded region representing 1-σ bootstrap error. (a)
Raman laser beams configuration, allowing motional state cooling in all three dimensions. (b) Radial sideband thermometry
after RSC averaged over the atom array. (c) Measured σ field correlations with and without RSC. Inset: Fitted ξd/a. (d)
Simulated σ field correlations at the critical point with and without accounting for atom motion using experimental parameters.
This motional effect is considered by performing Monte-Carlo simulation. We sample the initial position and momentum
distribution and then evolve the positions of the atoms with zero acceleration. Atom temperature is calibrated via release-
recapture experiment to be about 5 µK without Raman cooling. This simulation shows that our critical correlation is minimally
affected by atom motion when RSC is applied.
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FIG. 9. Locating critical point for 1D Rydberg array (PBC). (a) A typical Rydberg population density at a given ramp speed
(30 MHz/µs). Orange curve shows the results after smoothing and interpolation from the experimental measured data (red
dots). Blue curve represents the numerical simulation of stochastic evolution of the system considering decoherence and atom
loss. (b) A typical susceptibility curve as a function of detuning, further calculated from (a). Red dots shows numerical
differentiation to experimentally measured data. The asymmetric shape of the peak and the fast oscillation generated from
the numerical differentiation inhibit the accurate extraction of the peak location. The orange curve shows the results after
numerical differentiation and another round of data smoothing from the smoothed data in (a). The blue curve shows the
numerical differentiation for the numerical simulation, which matches the peak location ∆max (dashed green) of the orange
curve and validates the extraction scheme. (c) Extracted susceptibility peak location ∆max as a function of linear sweep
rate. Dots and squares represent the system size of 24 and 40 respectively. Red and blue represent extracted ∆max for the
forward scan (starting in the paramagnetic phase and linearly ramping up the detuning) and the backward scan (starting in
the antiferromagnetic state and linearly ramping down the detuning). Shaded regions represent 1-σ bootstrap errors. Ideally,
for ramps that are adiabatic, one expects the results from both directions to converge to the critical point (which is numerically
calculated from the location of the energy gap minimum for a finite system). The main limitations of the backward scan are
decoherence and atom loss during the AFM state preparation.

a b c

FIG. 10. Data post-selection. Stars denote experimental measurements, with the shaded region representing 1-σ bootstrap
error. Gray solid, dotted, and dashed lines indicate ground (DMRG), unitary, and stochastic wave-function simulation results
using experimental parameters. (a, b) Ground state simulations with and without blockade violation post-selection for 40-atom
ring (a) and 9 × 9 rectangular array (b). (c) Raw measurement of the critical σ-field correlation with loss-inclusive simulations
in the 7 × 7 rectangular array.
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FIG. 11. (a) Two-point correlations of the energy field ϵ at the critical point for both 24-atom and 40-atom systems. (b)

Averaged one-point function analyzed independently for the bulk (⟨σ⟩) and the boundary (⟨σ⟩∂) across the phase transition.
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