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Lucas Leclerc,1, 4 Bastien Gély,1 Daniel Barredo,1, 5 Thierry Lahaye,1 Norman Y. Yao,3 and Antoine Browaeys1
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We implement and characterize a protocol that enables arbitrary local controls in a dipolar atom array, where
the degree of freedom is encoded in a pair of Rydberg states. Our approach relies on a combination of local
addressing beams and global microwave fields. Using this method, we directly prepare two different types of
three-atom entangled states, including a W -state and a state exhibiting finite chirality. We verify the nature of the
underlying entanglement by performing quantum state tomography. Finally, leveraging our ability to measure
multi-basis, multi-body observables, we explore the adiabatic preparation of low-energy states in a frustrated
geometry consisting of a pair of triangular plaquettes. By using local addressing to tune the symmetry of the
initial state, we demonstrate the ability to prepare correlated states distinguished only by correlations of their
chirality (a fundamentally six-body observable). Our protocol is generic, allowing for rotations on arbitrary sub-
groups of atoms within the array at arbitrary times during the experiment; this extends the scope of capabilities
for quantum simulations of the dipolar XY model.

The last decade has witnessed tremendous progress to-
ward controllable many-body quantum systems [1–7]. This
progress lies along two axes. On the digital front, pro-
grammable interactions in small and intermediate scale sys-
tems can be compiled into arbitrary unitary evolution [8–
10]. On the analog front, a system’s native interactions of-
fer a scalable approach for realizing coherent many-body dy-
namics. This latter approach has emerged as a fruitful strat-
egy for the quantum simulation of large-scale, strongly cor-
related many-body systems [11–15]. Combining the scal-
ability of analog simulation with local controls inherent to
the digital approach promises the opportunity to explore a
broader landscape of quantum phenomena. In this quest for
full many-body quantum control, various platforms ranging
from neutral atoms [16–18] and trapped ions [19, 20] to po-
lar molecules [21, 22] and superconducting circuits [23, 24],
have developed strategies to combine their native interactions
with high-fidelity local rotations. This enhanced level of con-
trol has enabled the preparation of broader classes of ini-
tial states [25, 26], the measurement of multi-basis observ-
ables [27], and even mid-evolution gates [28]. These advances
enabled the integration of novel quantum information proto-
cols with quantum simulators [29–32].

Arrays of atoms coupled via Rydberg interactions have re-
cently emerged as both promising quantum simulators [33,
34] and information processors [35–38]. Combining ground-
state Raman manipulations [39, 40] with the ability to address
individual atoms has already allowed for the demonstration
of local rotations in such systems [41–43]. This is appropri-
ate when the qubit is encoded, for example, in the hyperfine
ground states of alkali atoms. However, when the qubit is
encoded in a pair of Rydberg states, no analogous procedure
has been realized. This challenge naturally arises for quantum

simulations of the dipolar XY model [34, 44, 45], an impor-
tant platform for the study of both correlated phases [34] and
quantum metrology [46].

Here, we address this challenge by demonstrating a gen-
eral protocol implementing nearly-arbitrary local control in a
dipolar Rydberg atom array. Our approach allows for the ro-
tation of arbitrary classes of atoms and can be applied during
any part of the experiment (i.e. initialization, evolution and
measurement). Our results are threefold. First, we bench-
mark our method by performing tomography on a three-atom
W -state, demonstrating that it exhibits tripartite entanglement
violating the Mermin-Bell inequality [47]. Second, by using
local rotations to add phases to this W -state, we demonstrate
the preparation of states exhibiting finite chirality [48]. Both
the measurement of this chirality, as well as the tomography
of the system’s density matrix, require access to multi-basis,
multi-body observables. Finally, we extend our procedure to
a frustrated six-atom system consisting of a pair of triangular
plaquettes. By choosing different initial states, we adiabati-
cally prepare states exhibiting both ferromagnetic and antifer-
romagnetic (six-body) chiral-chiral correlation functions.

Our set-up [34, 46, 49] consists of two-dimensional ar-
rays of 87Rb atoms trapped in optical tweezers. The atoms
are arranged in groups of equilateral triangles [Fig. 1(a)].
We encode a qubit using two Rydberg states |↑⟩ =∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣60P1/2,mJ = −1/2
〉
. The

atoms are coupled via dipolar interactions, described by the
XY Hamiltonian:

HXY =
J

2

∑
i<j

a3

r3ij
(σx

i σ
x
j + σy

i σ
y
j ) , (1)

with rij being the distance between atom i and j, a =
12.3(1) µm the lattice spacing, J/a3h = −0.82(1) MHz the
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Figure 1. Multi-basis measurements protocol. (a) Experimental
set-up. The microwaves at a frequency ω0 (ω0 + δ) are on resonance
with the 0δ (1δ) atom transitions and off-resonant with the others.
(b) Experimental sequence to measure the state of three atoms in the
y, z and x basis. (c) Average magnetization of each class during
a Ramsey experiment. The experimental sequence for φ = −π/2
corresponds to the one in (b). Solid lines: simulations including ex-
perimental imperfections (see text). The shaded areas represent the
standard deviation.

interaction strength, and σx,y,z
i the Pauli matrices acting on

spin i. A ∼ 45 G magnetic field, perpendicular to the atomic
plane, defines the quantization axis and ensures isotropic in-
teractions. At the beginning of each experimental sequence,
the atoms are excited from their ground state to |↑⟩ using stim-
ulated Raman adiabatic passage.

Our protocol to perform multi-basis measurements relies
on the combination of microwave pulses and local light-
shifts. The microwaves, tuned to the |↑⟩ − |↓⟩ transition
(at ω0/(2π) ∼ 16.7 GHz), only allow for global rotations.
To perform local rotations, we apply light-shifts on spe-
cific atoms using addressing beams generated by reflecting
a 1013 nm laser on a spatial-light-modulator (SLM). This
laser is blue-detuned with respect to the 6P3/2 − |↑⟩ tran-
sition by ∆/(2π) ∼ 400 MHz, resulting in a light-shift
δ ∼ Ω2

1013/(4∆) for a Rabi frequency Ω1013 on an addressed
atom [50]. As illustrated in Fig. 1(a), the atoms are addressed
with different intensities to produce different values of light-
shifts, realizing the Hamiltonian Hz =

∑
i ℏδi(1 + σz

i )/2,
with δi = 0δ (atoms not addressed), 1δ or 2δ (with δ ≈
2π × 23 MHz). From now on, we refer to these classes of
atoms as the 0δ, 1δ and 2δ atoms. To perform local rota-

tions on these three classes, we apply the addressing beams
and send simultaneously two microwave pulses with frequen-
cies ω0 and ω0 + δ, resonant with the 0δ and 1δ atoms [see
Fig. 1(a,b)]. This allows for arbitrary qubit rotations of the
0δ and 1δ atoms while the 2δ atoms remain unaffected. By
applying a global rotation prior to the local ones, as detailed
below, we can now perform measurements in arbitrary bases
on three classes of atoms at the same time: the choice of the
measurement basis is set by the duration and phase of each
microwave pulse with respect to a local oscillator at ω0.

As an example, Fig. 1(b) shows the experimental sequence
used to measure the 0δ, 1δ and 2δ atoms along the y, z and x
axis. The first microwave pulse applies a global π/2 rotation
along the −y. We call R−y the corresponding rotation opera-
tor. Then, combining two microwave frequencies with the ad-
dressing, we apply the following local rotations Rx

0δ ⊗Ry
1δ ⊗

12δ with Ru
nδ the operators corresponding to a π/2 rotation

of the nδ atoms around the u axis. This full sequence is thus
equivalent to the rotations (Rx

0δ ·R−y
0δ )⊗ (Ry

1δ ·R−y
1δ )⊗R−y

2δ .
As, Rx

1δ ·R−y
1δ = Rz

1δ ·Rx
1δ , and as we measure in the z-basis,

the z rotation has no effect on the measured probabilities. The
sequence thus amounts to the rotation Rx

0δ ⊗ 11δ ⊗R−y
2δ [51].

We illustrate and benchmark the protocol above by per-
forming a Ramsey experiment: starting from all atoms in |↑⟩,
we apply a first global rotation Rx cosφ+y sinφ, followed by
the local rotations Rx

0δ ⊗ Ry
1δ ⊗ 12δ and finally read-out the

states for various φ. Each experimental sequence is repeated
∼ 500 times to compute the average magnetizations. We ex-
pect oscillations of the 0δ and 1δ-atom magnetization that are
out of phase by π/2. The 2δ-atom magnetization should re-
main constant at 0. Figure 1(c) shows the experimental re-
sults. We attribute the finite contrast of the oscillations to ex-
perimental imperfections [50]. To confirm this, we perform a
Monte Carlo simulation including state preparation and mea-
surement errors, finite Rydberg lifetime, interactions between
atoms, and depumping and losses induced by the address-
ing [50]. Taking into account all these experimentally cal-
ibrated mechanisms in the numerics yields good agreement
with the data.

We now demonstrate how the local control introduced in
our work enables the preparation and detection of complex,
correlated states. In particular, we investigate the entangled
states of three atoms placed in an equilateral triangle and in-
teraction via HXY. In this configuration, the interaction lifts
the degeneracy between |↑↑↓⟩, |↑↓↑⟩ and |↓↑↑⟩, leading to
three eigenstates |W ⟩ = (|↑↑↓⟩+ |↑↓↑⟩+ |↓↑↑⟩) /

√
3 and

|χ±⟩ = (|↑↑↓⟩ + e±i 2π
3 |↑↓↑⟩ + e±i 4π

3 |↓↑↑⟩)/
√
3 separated

in frequency by 3J/ℏ, as shown in Fig. 2(a). Despite all states
exhibiting homogeneous magnetization and two-point corre-
lation functions, they can be distinguished through their chi-
rality. The chirality χ is a spin rotationally symmetric ob-
servable that breaks time reversal symmetry and is defined for
three spins i, j and k by ⟨χijk⟩ = ⟨(σi × σj) ·σk⟩, with
σi = σx

i x + σy
i y + σz

i z [52]. For a product state, ⟨χ⟩ is
bounded by ±1 and this limit can be overcome for entangled
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Figure 2. |χ(ϕ)⟩ state preparation. (a) Spectrum of 3 atoms in an
equilateral triangle, interacting via the XY model. (b) Microwave
Rabi oscillations. Green: single-atom Rabi oscillations. Purple: 3-
atom Rabi oscillations with P↑↑↑ is the probability to measure all
atoms in |↑⟩). Solid curves: simulations including imperfections (see
text). (c) Chirality of |χ(ϕ)⟩ as a function of ϕ (purple circles). Pur-
ple, blue, red and black lines: Monte Carlo simulations including
imperfections. The shaded areas represent the standard deviation.

states. For |χ±⟩, it reaches a maximum value of ±2
√
3.

In order to prepare these states, we proceed as follows.
Starting from all atoms in |↑⟩, we apply a Gaussian mi-
crowave pulse at frequency ω0 + 2J/ℏ to drive a direct
transition from |↑↑↑⟩ to |W ⟩. The Rabi frequency is col-
lectively enhanced by a factor of

√
3, compared to the one

measured for single atom Rabi oscillation experiment (see
Fig. 2(b)). These dynamics are well captured by numeri-
cal simulations that include all identified imperfections (see
[50]). Finally, we turn on the addressing light for a dura-
tion tphase to imprint a phase 0ϕ, 1ϕ and 2ϕ on the 0δ, 1δ
and 2δ atoms, with ϕ(tphase) =

∫ tphase

0
δ(t) dt, thus preparing

|χ(ϕ)⟩ =
(
|↑↑↓⟩+ eiϕ |↑↓↑⟩+ ei2ϕ |↓↑↑⟩

)
/
√
3.

To measure the chirality, we first note that it can be written
as the sum of six terms corresponding to the different permuta-
tions of {x, y, z}: ⟨χ0δ,1δ,2δ⟩ = ⟨σx

0δσ
y
1δσ

z
2δ⟩+⟨σy

0δσ
z
1δσ

x
2δ⟩+

⟨σz
0δσ

x
1δσ

y
2δ⟩−⟨σy

0δσ
x
1δσ

z
2δ⟩−⟨σx

0δσ
z
1δσ

y
2δ⟩−⟨σz

0δσ
y
1δσ

x
2δ⟩. For

each value of ϕ, we measure each set of bases to compute the
total chirality of |χ(ϕ)⟩, similarly to previous work using su-
perconducting qubits [27]. Figure 2(c) shows the results (pur-
ple circles) as a function of ϕ, together with the theoretical
expectations. The amplitude is reduced due to experimental
imperfections. Simulating each step of the sequence while ac-
counting for these imperfections [50] leads to a better agree-

Figure 3. State tomography. Real (a,b,c) and imaginary (d,e,f) parts
of the reconstructed density matrix for the |W ⟩,

∣∣χ+
〉

and
∣∣χ−〉

states. The transparent bars represent the expectation values for per-
fect states.

ment between theory and experiment. From a simulation of
the measurement sequence (including local rotations and the
readout step) assuming a perfect state preparation [blue curve
in Fig. 2(c)], we find that the main limitations of the chirality
measurement are the imperfections during the measurement
sequence.

We now exploit our ability to apply arbitrary local rotations
to perform quantum state tomography of |W ⟩ and |χ±⟩ and
reconstruct their density matrix. To do so, we measure the
state of each class of atoms in the x, y and z bases, cor-
responding to 33 = 27 different measurements [50], from
which we compute the relevant correlation functions, as well
as extract the density matrix (using a maximum-likelihood re-
construction [50]). Figure 3 shows, for one triangle, the real
and imaginary parts of the density matrices ρ of the three
states |W ⟩, |χ+⟩ and |χ−⟩. From them, we compute fideli-
ties F = ⟨ψ|ρ|ψ⟩ of 0.74(1), 0.71(1) and 0.68(1) [0.80(1),
0.78(1) and 0.74(1) when correcting for detection errors].
They are all above 2/3, revealing genuine three-partite en-
tanglement [53–55]. In addition, the produced W -state vi-
olates the Mermin-Bell inequality: S = |⟨σz

0δσ
z
1δσ

z
2δ⟩ −

⟨σx
0δσ

x
1δσ

z
2δ⟩ − ⟨σz

0δσ
x
1δσ

z
2δ⟩ − ⟨σz

0δσ
z
1δσ

x
2δ⟩|≤ 2 as we mea-

sure Sexp = 2.083(26) [47]. Much like in the more conven-
tional Bell-state case, this violation rules out a hidden-variable
model for the measured correlations.

Having leveraged our local control to prepare and probe en-
tangled states, we now demonstrate the power of this toolset
in a quantum simulation experiment. Using a frustrated geom-
etry consisting of a pair of triangular plaquettes [Fig. 4(a1)],
we attempt to adiabatically prepare low-energy states of the
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antiferromagnetic dipolar XY model [56]. Owing to time-
reversal symmetry, all states in the spectrum exhibit zero chi-
rality, ⟨χ⟩ = 0. However, exact diagonalization demonstrates
that, the two lowest-energy states exhibit large, but opposite,
chiral-chiral correlations. To illustrate this feature, we prepare
both the ground and first excited states, by carefully choosing
an appropriate pattern of local light shifts.

Our protocol proceeds as follows [34]: after initializing
all the atoms in |↓⟩, we turn on a pattern of local light
shifts [Fig. 4(a)]; we then apply a microwave pulse to ro-
tate the non-addressed atoms to |↑⟩. This prepares a product
state which is the lowest energy state of Hz . Starting with
δ ≫ |J |, we then reduce the light-shift as δ(t) = δ0e

−t/τ

[with τ = 0.55 µs and δ0/2π = 23(46) MHz for the 1δ(2δ)-
atoms], thus quasi-adiabatically connecting the initial Hamil-
tonian (≈ Hz) to the final one HXY.

In general, such an adiabatic protocol is expected to pre-
pare the ground state of the final Hamiltonian, regardless of
the details of the ramp. This expectation fails when the sys-
tem’s ground state exhibits a level crossing, which requires ei-
ther fine-tuning or some underlying symmetry. Utilizing our
ability to shape the addressing light, we thus consider two dif-
ferent patterns exhibiting distinct symmetries: pattern 1 re-
spects a mirror symmetry My along the y-axis [Fig. 4(a1)],
while pattern 2 respects inversion symmetry I [Fig. 4(a2)].
For the first pattern, both initial and ground states live in the
same symmetry sector of My and thus are adiabatically con-
nected [Fig. 4(b1)]. We thus expect to prepare the ground
state, leading to the observation of anti-ferromagnetic chiral-
chiral correlations. By contrast, for the second pattern, the
initial and ground states live in different symmetry sectors of
I and thus cannot be adiabatically connected [Fig. 4(b2)]. We
thus expect to prepare the first excited state, which exhibits
ferromagnetic chiral-chiral correlations.

We experimentally explore this difference using the multi-
basis measurement protocol described above. It not only al-
lows measuring the chirality ⟨χ(t)⟩ of a single triangle, but
it also enables the measurement of six-body correlation func-
tions, from which the two-triangle chiral-chiral correlations,
⟨χAχB⟩, can be extracted. In principle, the full reconstruction
of ⟨χAχB⟩ requires the measurement of 36 different terms.
However, numerical simulations indicate that a smaller subset
of six terms is sufficient to faithfully capture the system’s cor-
relations [50]. We can, therefore, use the same addressing pat-
tern (and thus only a single SLM [50]) for both the adiabatic
ramp and the multi-basis measurement. More specifically, we
measure:

⟨χAχB⟩′ = η
∑

a,b,c ∈ perm(x,y,z)

⟨σa
0δσ

b
1δσ

c
2δσ̃

a
0δσ̃

b
1δσ̃

c
2δ⟩

−⟨σa
0δσ

b
1δσ

c
2δ⟩⟨σ̃a

0δσ̃
b
1δσ̃

c
2δ⟩

(2)

where σ[σ̃] refers to spins in triangle A[B] and η = ±1 is set
by the relative handedness of the two three-spin measurement
patterns: η = −1 for pattern 1 and η = 1 for pattern 2 [50].

We begin by studying the quasi-adiabatic ramp using the
pattern depicted in Fig. 4(a1). Focusing on the chiral-

1δ

2δ

0δ

A B

(a1) Pattern 1

1δ

0δ

2δ

A B

(a2) Pattern 2

0.0 0.2 0.4 0.6
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−12.1

−11.9

−11.7

E
+

3δ
/
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(b1)

My |φn〉 = λn |φn〉

λ = +1 λ = −1

0.0 0.2 0.4 0.6
δ

−12.1

−11.9

−11.7
(b2)

I |φn〉 = λn |φn〉

λ = +1 λ = −1
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t (µs)
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〈χ
〉

(d1)
Pat. 14A Pat. 14B

0 2 4
t (µs)

−0.5

0.0

0.5
(d2)

Pat. 24A Pat. 24B
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Time (µs)

−0.5

0.0

0.5

〈χ
A
χ
B
〉′

(c)

Pat. 1 Pat. 2 Pat. 1 NI Pat. 2 NI

Figure 4. Adiabatic preparation of low energy states (a) Light
shift patterns (0, 1δ, 2δ) and associated initial states. Pattern 1 re-
spects mirror symmetry along the y-direction My whereas pattern 2
respects inversion symmetry I. (b) Energy spectrum during the adi-
abatic ramp for pattern 1[2]. (c) Chiral-chiral correlations ⟨χAχB⟩

′

for pattern 1 (green), pattern 2 (purple) and non interacting trian-
gles (blue). The early time (t ≲ 1.5µs) observation of non-zero
⟨χAχB⟩

′
is due to a necessary waiting period before measurement,

during which the system undergoes additional dynamics (see [50]).
(d) Chirality for triangles A and B under the two patterns.

chiral correlation, we observe the development of strong anti-
ferromagnetic ⟨χAχB⟩

′
correlations that persist to late times

[Fig. 4(c), green]. This observation is consistent with a
preparation yielding more than 50% population in the ground
state [50]. By contrast, when considering the second pattern
[Fig. 4(a2)], the dynamics exhibit similar features but with
opposite sign. The presence of equally strong ferromagnetic
⟨χAχB⟩

′
correlations is consistent with an equally large pop-

ulation in the first excited state of the system. To demonstrate
that our observations indeed arise from the dipolar interac-
tions between the two triangles, we also measure ⟨χAχB⟩

′

for non-interacting triangles separated by ≈ 72 µm. In this
case, neither patterns lead to significant correlations [Fig. 4(c),
blue].

Finally, we discuss two important sources of imperfections
in our protocol. First, although τ was chosen to be much
longer than the timescale of the system (1/J), residual di-
abatic errors manifest themselves in a small chirality value
⟨χ(t)⟩ [Fig. 4(d)]. Second, there are fluctuations in the posi-
tions of the atoms owing to their initial position and velocity
uncertainty upon the release from the tweezers. As a result,
for each repetition of the experiment, the atoms experience
slightly different time-dependent interactions, that ultimately
lead to the damping of the chirality oscillation and to the de-
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cay of the chiral-chiral correlations [50].
In conclusion, we have demonstrated a new tool combin-

ing global microwaves and local light-shifts to enable local
control of qubits encoded in Rydberg levels. Our protocol
is generic and can be extended to an arbitrary number of
classes of atoms. The agreement between experiments and
simulations highlights our good understanding of error in our
system—a crucial ingredient for further improvements.

More broadly, this work opens the doors to a number of in-
triguing directions. First, the measurement of multi-body cor-
relation functions can capture the intricate correlations that
characterize complex phases of matter such as time reversal
symmetry breaking and topological order [48]. Second, the
ability to measure along arbitrary bases enables the imple-
mentation of novel certification protocols [57]. Finally, by
interspersing unitary rotations with analog quantum simula-
tion, one can study multi-time correlation functions as well as
more varied dynamical protocols [27, 58, 59].
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lans, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 626, 58
(2024).

[11] I. Bloch, J. Dalibard, and W. Zwerger, Reviews of Modern
Physics 80, 885 (2008).

[12] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli,
and M. Greiner, Nature 528, 77 (2015), arxiv:1509.01160
[cond-mat, physics:physics, physics:quant-ph].

[13] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner,
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N. Lang, H. P. Büchler, T. Lahaye, and A. Browaeys, Science
365, 775 (2019), arxiv:1810.13286 [cond-mat, physics:physics,
physics:quant-ph].

[15] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter,
D. Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C.
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Supplemental Material

EXPERIMENTAL METHODS

The implementation of the dipolar XY Hamiltonian relies
on the 87Rb Rydberg-atom tweezer array platform described
in previous works [34, 46, 49]. The tweezer array is created
by diffracting a 820-nm laser beam on a first Spatial Light
Modulator (SLM) and focusing it by a NA = 0.5 aspherical
lens [60]. The phase pattern imprinted on the beam governs
the geometry of the array. This pattern cannot be changed
during the experimental sequence.

We encode our qubit states as |↑⟩ =
∣∣60S1/2,mJ = 1/2

〉
and |↓⟩ =

∣∣60P3/2,mJ = −1/2
〉

and use microwaves at
ω0/(2π) ≈ 16.7GHz to manipulate them. A 45-G quantiza-
tion magnetic field perpendicular to the array ensures isotropic
XY interactions and shifts away from the |↑⟩ − |↓⟩ transition
the irrelevant Zeeman sublevels.

The microwaves used to manipulate the qubit states are
generated using a vector signal generator (R&S®SMM100A)
plugged to an antenna placed outside the vacuum chamber.

Experimental sequence

Assembled array of Rydberg atoms – Figure S1 shows the
detailed experimental sequence used to prepare the |χ±⟩ states
and measure the chirality. After randomly loading atoms into
optical tweezers of 1-mK depth (with a typical filling fraction
of 60%), we assemble the array [61]. We then cool the atoms
to a temperature of 10µK using Raman sideband cooling and
optically pump them to |g⟩ =

∣∣5S1/2, F = 2,mF = 2
〉
. Fol-

lowing this, we adiabatically ramp down the power of the trap-
ping light to reduce the tweezer depth by a factor ∼ 2. Then,
we switch off the tweeezers and excite the atoms to the Ry-
dberg state |↑⟩. The excitation is performed by a two-photon
stimulated Raman adiabatic passage (STIRAP) with 421-nm
and 1013-nm lasers.

Preparation of the state |W ⟩ – To generate the |W ⟩ state,
we apply a microwave pulse with gaussian temporal profile
Ω(t) = Ωmaxe

−π(t/tRabi)
2

, detuned by 2J from the resonance,
with a Rabi frequency Ωmax/2π = 0.33 MHz and a pulse
duration of tRabi = 0.950 ns.

Preparation of the state |χ(ϕ)⟩ – We then turn on the ad-
dressing for a time tphase of a few nanoseconds to imprint a
phase 0ϕ, 1ϕ, and 2ϕ on the 0δ, 1δ and 2δ atoms respectively
(see next section for more details about the addressing set-
up). Experimentally, we use a free-space Electro-Optic Mod-
ulator (EOM) to control this pulse. Due to transient effects
the imprinted phase is not linear with tphase and rather reads
ϕ(tphase) =

∫ tphase

0
δ(t) dt. We calibrated ϕ(tphase) using a ded-

icated experiment (see next sections).
Local rotations sequence – Once a state |χ(ϕ)⟩ is prepared,

we apply local rotations on the 0δ, 1δ and 2δ atoms to measure
them in different basis. As explain in the main text, we first

send a first microwave pulse (Gaussian temporal profile) with
a frequency ω0 and an amplitude Ωmax/2π = 19.23 MHz (a
π/2 rotation corresponds to tRabi = 13 ns) to perform a global
rotation on all the atoms. We then turn of the addressing light
for 80 ns and during this time send two microwave Gaussian
pulses at frequency ω0 and ω0 + δ and with a same ampli-
tude of Ωmax/2π = 5.43 MHz (a π/2 rotation corresponds to
tRabi = 46 ns). We independently control the pulse duration
and phase of each microwave pulse, allowing to perform any
arbitrary rotations.

Readout – To avoid residual interactions between the atoms
during the readout procedure we first apply a microwave pulse
at 7.5 GHz transferring the atomic population from |↓⟩ to the
n = 58 hydrogenic manifold (h) via a three-photon transi-
tion. The atoms in (h) do not interact with those remaining
in |↑⟩. The interaction dynamics is then frozen. The next
step consists in a deexcitation pulse performed by applying a
2.5 µs laser pulse on resonance with the transition between
|↑⟩ and the short-lived intermediate state (6P3/2) from which
the atoms decay back to ground state 5S1/2. Finally we ramp
back on the trapping lights recapturing only the atoms in the
ground state while the ones in (h) are expelled from the traps.
When then turn on the fluorescence beams, and image the re-
captured atoms. Thus we map the |↑⟩ and |↓⟩ state to the pres-
ence or absence of the corresponding atom.

Addressing beams

The addressing laser beams are generated by an external
cavity, 1013 nm diode laser seeding an amplifier outputting up
to 8 W. The light is blue detuned from the (6P3/2,mJ = 3/2)
to |↑⟩ transition by ∆/2π ∼ 400 MHz. We use a second
dedicated SLM to produce the pattern of addressing beams,
superimposed onto the tweezer array pattern. Each beam is
focused on a 1/e2 radius of 1.5 µm and induces a light-shift
of either 1δ or two 2δ. A power of ≈ 300 mW on one atom
results into a light-shift δ/(2π) ≈ 23 MHz.

To control the light-shift on each addressed atoms, we per-
form a microwave spectroscopy on the ↑ − ↓ transition: We
initialize all the atoms in |↓⟩, turn on the addressing light, send
a microwave pulse at a given frequency near ω0 and readout
the state. Figure. S2 shows a typical spectrum obtained af-
ter optimization of the SLM parameters to apply the desired
light-shifts. The average light-shifts for the 1δ (and 2δ) atoms
are 2π× 22.82 MHz (2π× 45.46 MHz) with a typical disper-
sion of 2π × 0.2 MHz (2π × 0.4 MHz) between the different
atoms.

A current limitation of this scheme is that the only char-
acteristic of the addressing pattern that can be dynamically
modified during the ∼ 10µs timescale of an experiment is the
overall amplitude of the light-shift; however, one could en-
vision to circumvent this limitation in the future, using e.g.
several SLMs in a multiplexing configuration.
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Figure S1. Detailed experimental sequence. (Left) Atomic levels used in this work. (Right) Experimental sequence used to prepare a |χ(ϕ)⟩
state, from the Rydberg excitation step to the readout.

Figure S2. Microwave spectroscopy to measure the light-shifts.
Top panel: probability of each addressed atom to be in |↑⟩ after the
microwave pulse at a frequency ωMW. For each atoms, we fit the data
by a Gaussian (thin curves) and extract the center frequency. Bottom
panel: histogram of the fitted frequencies. The width of the bars
represent the frequency fit uncertainty.

Calibration of the phase ϕ(tphase)

In order calibrate the imprinted phase ϕ as a function of
tphase we perform a Ramsey experiment. The atoms are first
initialized in |↑⟩. We apply successively a π/2 microwave
pulse, send the addressing pulse for a time tphase, reapply a
π/2 microwave pulse and readout in the z-basis. Figure. S3
shows the 2δ-atom magnetization as a function of tphase. We
expect a magnetization oscillation at a frequency 2δ but due to
transient effects in the EOM, the accumulated phase ϕ(tphase)
exhibits a non-linear behavior with time. We use a piecewise
polynomial function to fit ϕ(tphase) (solid curves in Fig. S3).
This fit allows us to convert tphase into ϕ.

Figure S3. Calibration of ϕ(tphase). (a) 2δ atoms magnetization as
a function of tphase (circles). Solid curve: results obtained after fitting
by a sinusoidal function with a phase ϕ(tphase) varying as piecewise
polynomial function. (b) Fitted phase as a function of tphase.

EXPERIMENTAL IMPERFECTIONS

In this section, we review the sources of errors decreasing
the preparation and detection fidelities of the 3-atom states
studied in the main text.

State preparation errors

We estimate the fidelity of the Rydberg excitation
ηSTIRAP = 98 ± 0.3% [34, 46]. A fraction 1 − ηSTIRAP of the
atoms stays in 5S1/2 after the STIRAP sequence and hence do
not participate in the dynamics. These non-interacting atoms
are read as a spin |↑⟩ at the end of the sequence.

Local rotations imperfections

We identified six sources of imperfections occurring during
the local rotations sequence shown in Fig. S1).
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Finite light-shifts – The applied light-shift of δ/2π ≈
23 MHz are not much larger compared to the microwave Rabi
frequency Ωmax/2π = 5.43 MHz. This induces crosstalk
with the off resonant microwave leading to imperfect rotations
of the atoms.

Interaction during rotations – Since the XY interactions
cannot be switched off, the atoms interact during the ∼ 100 ns
of local rotations. These residual interactions affect the ro-
tations and thus reduce the detection fidelity. Experimen-
tally, we optimized the microwaves Rabi frequencies Ωmax

to minimize this local rotation duration time while keeping
δ ≫ Ωmax to maximize the rotation efficiencies.

Addressing-induced depumping – Due to the spontaneous
emission induced by off-resonant coupling to the short-lived
intermediate state 6P3/2, the addressed atoms in |↑⟩ are slowly
depumped to the ground state 5S1/2. For ∆/2π ∼ 400 MHz
and δ/2π ≈ 23 MHz we experimentally measure effective
lifetimes of ∼ 2.3 µs and ∼ 1.1 µs for the 1δ and 2δ atoms in
the |↑⟩ state.

Addressing-induced atom losses – The tightly focused ad-
dressing beams apply a ponderomotive force on the addressed
atoms, pushing them away from their trap center, thus prevent-
ing them from being recaptured before readout. Experimen-
tally, for δ/2π ≈ 23 MHz, we measure losses of 0.3 ± 0.3%
and 1.3± 0.3% for the 1δ and 2δ atoms when sending a 80 ns
addressing pulse.

Light-shifts inhomogeneities – As explained in a previous
section, the light-shifts applied to the atoms are not perfectly
homogeneous. We measured a dispersion on the order of 1%
after calibration that can drift up to 3% after one day without
further calibrations. When the addressing is on, the dispersion
results into a variation of the phase accumulation of the 1δ-
atoms across the array. This leads to a spread of the angle of
rotation of the qubits when sending the microwave pulses for
local rotations.

Timing jitter – We measure an electronic jitter of ±2 ns be-
tween the addressing and the microwave pulses. It has a sim-
ilar effect to that of light shift inhomogeneities. Shot-to-shot,
the jitter induces an uncertainty in the angle of rotation of the
1δ atoms leading to imperfect microwave rotations.

Readout imperfections

Due to the finite efficiency of each step in the readout se-
quence shown in Fig. S1, an atom in |↑⟩ (respectively in |↓⟩)
has a small probability ϵ↑ (ϵ↓) to be detected in |↓⟩ (|↑⟩). The
main contributions to ϵ↑ are the finite efficiency of the deexci-
tation pulse ηdeexc and the probability ϵ to lose an atom due to
background gas collisions. For ϵ↓ the main contribution is the
radiative decay of ↓ to the ground state. A set of independent
experiments leads to first order to ϵ↑ = (1 − ηdeexc) + ϵ =
1.5% + 1.2% = 2.7± 0.3% and ϵ↓ = 1.5± 0.3%.

Using these values, we correct the data of the quantum state
tomography from detection errors. We denote P i = (P i

↑, P
i
↓)

the probability to measure atom i in |↑⟩ and |↓⟩. These raw

probalities are linked to their corresponding quantities P̃ i =
(P̃ i

↑, P̃
i
↓) free from detection errors by P i = M P̃ i, with M

the detection error matrix:

M =

(
1− ϵ↑ ϵ↓
ϵ↑ 1− ϵ↓

)
. (3)

Extending to 3-atoms and assuming uncorrelated errors, we
get P i⊗P j⊗P k = (M⊗M⊗M)(P̃ i⊗P̃ j⊗P̃ k). To correct
the raw data for detection errors we invert (M ⊗ · · · ⊗M) to
compute (P̃ i ⊗ · · · ⊗ P̃ k).

Decoherence during the dynamics

Besides the state preparation and measurement errors
described above, two other sources of errors contribute to
decoherence.

Positional disorder – Due to the extension of the wave-
packet in the traps and the residual atomic motion, the inter-
atomic distances exhibit shot-to-shot fluctuations. We con-
sider that the atomic positions and velocities follow a Gaus-
sian distribution with standard deviations σ(x,y) ∼ 100 nm
in the array plane and σz ∼ 0.6 µm perpendicular to it, and
σv ∼ 0.03 µm/µs in all directions. This positional disor-
der leads to shot-to-shot fluctuations of the interaction energy
between two atoms and thus results in decoherence when av-
eraging over experimental realizations.

Finite Rydberg lifetime – During the dynamics, one atom in
a Rydberg state can decay spontaneously to the ground state
(rate Γsp) or be transferred by black-body radiation to other
Rydberg states (rate Γbb). When this occurs, the readout of the
qubit state can be biased. Moreover, a decay induces a loss
from the qubit basis and thus affects the ensuing dynamics.
We calculate from [62] for T = 300 K: 1/Γsp

60S ≃ 260 µs,
1/Γbb

60S ≃ 157 µs, 1/Γsp
60P ≃ 472 µs and 1/Γbb

60P ≃ 161 µs.

NUMERICAL SIMULATIONS

The simulations used to benchmark the 3-atom results of
Fig. 1 and 2 include the processes described in the previous
section. Each atom is modeled as a 5-level system with the
following basis states: the two interacting spin states |↑⟩ and
|↓⟩, the ground-state |g⟩ where atoms are initialized and can
decay to from all the others states, the short-lived intermediate
state 6P3/2 used in the two-photon excitation, and |r⟩, effec-
tively representing the Rydberg manifold other than |↑⟩ and
|↓⟩. The whole sequence depicted in Fig. S1 is implemented
with timings, amplitudes and frequencies as experimentally
realized and including all decay processes mentioned in the
previous sections. The only exception is the freezing protocol,
which is modeled by a fast decay process from |↓⟩ to |r⟩. The
qubit states interact both via the XY Hamiltonian with cou-
pling J/h = −0.82 MHz, and by van der Waals interaction
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with C↑↑
6 /a6 ≈ 2π × 40 kHz and C↓↓

6 /a6 ≈ 2π × 6 kHz. We
simulate the dynamics of this 53-level system using the pack-
age qutip, starting from |g⟩⊗3 and solving the master equation
for each step of the sequence and each set of experimental
parameters.

We account for the shot-to-shot fluctuations in the inter-
atomic distances and timing jitters by a Monte-Carlo sampling
of the experimental parameters with the estimated bounds
given in the previous sections. We also include inhomo-
geneities of the light-shifts across the array. As solving the
Master equation becomes quickly resource-consuming (∼ 1
hour/shot), we average the simulation results over only 20
shots, which appears to be enough to reproduce the ex-
perimental data with reasonable agreement. At the end of
the Monte Carlo simulation, we apply to the results the
addressing-induced atom losses and readout errors following
the procedure described in previous the sections. The simula-
tion predicts a STIRAP efficiency for one atom of 98.3%, in
very good agreement with the experiment. The phases of the
microwave pulses are optimized so as to reproduce the data in
Fig. 1(c), and are then fixed to these values.

To simulate the chirality curves shown in Fig. 2(c) and
assess the impact of the various imperfections, we first cal-
culate the preparation fidelity of the W-state. We obtain
ηW = 83 ± 0.4%, with contributions to the infidelity of
6% from the STIRAP finite efficiency, 6% from the Rydberg
lifetime and 5% from positional disorder. We then include
the phase imprinting step to prepare the state |χ(ϕ)⟩. Calcu-
lating the chirality S of this state yields a maximum (mini-
mum) value of S/Smax = 0.8(−0.79) (red curve in Fig. 2(c))
with Smax = 2

√
3. Finally we simulate the measurement

phase for each of the 6 components of the chirality and obtain
maximum (minimum) values S/Smax = 0.55(−0.44) (pur-
ple curve), in good agreement with the data. Applying the
measurement sequence starting from a perfect |χ(ϕ)⟩ leads to
S/Smax = 0.7(−0.62) (blue curves).

QUANTUM STATE TOMOGRAPHY

To perform the full tomography of the 3-atom |W ⟩ and
|χ±⟩ states, we measure the 27 observables summarized in
the first column of Tab. I.

In order to reconstruct their density matrices ρ, we per-
form a maximum-likelihood estimation to constrain ρ to be
physical. We follow the method described in the Supplemen-
tal Materiel of [63]. Any density matrix can be written as
ρ(T ) = T †T/Tr(T †T ) with T being a complex 8 × 8 lower
triangular matrix with real diagonal elements. Thus T has 64
independent real parameters (t1, t2, · · · , t64) that minimize

Basis (0δ,1δ,2δ) Rotations ϕall(
◦) ϕ0δ(

◦) ϕ1δ(
◦)

xxx R−y −90 − −
xxy

(
R−y

0δ ⊗R−y
1δ

)
·Rx 0 −90 −90

xxz R−y
0δ ⊗R−y

1δ − −90 −90

xyx Rx
1δ ·R−y −90 − 0

xyy R−y
0δ ·Rx 0 −90 −

xyz R−y
0δ ⊗Rx

1δ − −90 0

xzx Ry
1δ ·R−y −90 − 90

xzy
(
R−y

0δ ⊗R−x
1δ

)
·Rx 0 −90 180

xzz R−y
0δ − −90 −

yxx Rx
0δ ·R−y −90 0 −

yxy R−y
1δ ·Rx 0 − −90

yxz Rx
0δ ⊗R−y

1δ − 0 −90

yyx (Rx
0δ ⊗Rx

1δ) ·R−y −90 0 0

yyy Rx 0 − −
yyz Rx

0δ ⊗Rx
1δ − 0 0

yzx (Rx
0δ ⊗Ry

1δ) ·R−y −90 0 90

yzy R−x
1δ ·Rx 0 − 180

yzz Rx
0δ − 0 −

zxx Ry
0δ ·R−y −90 90 −

zxy
(
R−x

0δ ⊗R−y
1δ

)
·Rx 0 180 −90

zxz R−y
1δ − − −90

zyx (Ry
0δ ⊗Rx

1δ) ·R−y −90 90 0

zyy R−x
0δ ·Rx 0 180 −

zyz Rx
1δ − − 0

zzx (Ry
0δ ⊗Ry

1δ) ·R−y −90 90 90

zzy
(
R−x

0δ ⊗R−x
1δ

)
·Rx 0 180 180

zzz 1 − − −

Table I. Microwave pulse sequence for the state tomography.
First column: measurement basis for the 0δ, 1δ and 2δ atoms. Sec-
ond column: applied rotations. Three last columns: relative phases
of the microwave pulses used implement the corresponding rotations
(ϕall refers to the global rotation and ϕ0,1δ to the local ones). The
− symbol indicates that the corresponding pulse is off for this se-
quence.

the following cost function:

C(T ) =
∑

α∈{x,y,z}3

∑
β∈{↑,↓}3

(
⟨β|R†

αρ(T )Rα|β⟩ − P β
α

)2
.

Here, α is the basis in which we measure each atom, β is
an experimental outcome, P β

α the probability to measure β in
the α basis and Rα the set of applied rotations to measure in
α. For example, when measuring in the xyz-basis, Rxyz =
R−y

0δ ⊗Rx
1δ ⊗ 12δ . We perform the minimization using the L-

BFGS-B algorithm provided by the SciPy package of Python.

6-BODY CHIRAL-CHIRAL CORRELATION FUNCTION

In this section we present additional numerical evidence
demonstrating that ⟨χAχB⟩′ accurately tracks the dynamics
of ⟨χAχB⟩ and thus serves as a suitable probe of the 6-body
chiral-chiral correlations of the underlying spin system. The
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full chiral-chiral correlation function is given by:

⟨χAχB⟩ =
∑

a,b,c∈{x,y,z}

∑
d,e,f∈{x,y,z}

sgn(a, b, c)sgn(d, e, f)×

×
[
⟨σa

1σ
b
2σ

c
3σ

d
4σ

e
5σ

f
6 ⟩ − ⟨σa

1σ
b
2σ

c
3⟩⟨σd

4σ
e
5σ

f
6 ⟩
]

(4)

where sgn(a, b, c) corresponds to the parity of the permutation
(a, b, c) and 1−3 and 4−6 labels the spins of triangles A and
B counter-clockwise, respectively.

When considering ⟨χAχB⟩′, the above sum is restricted
only to the terms where the same measurement basis
occurs for atoms of the same group. As a result,
sgn(a, b, c)sgn(d, e, f) becomes a constant whose value de-
pends on the relative handedness of the addressing light pat-
tern between the two triangles. In Eq.2, this phase factor is η,
taking the value of η = −1 for Pattern 1 and η = 1 for pattern
2 [Fig. 4(a)].

Turning to the dynamics of the chiral-chiral correlations,
we observed that, up to rescaling, the different correlation
functions (full ⟨χAχB⟩, ⟨χAχB⟩′ and ⟨χAχB⟩′ with measure-
ment imperfections) all follow one another at late times when
the system is in either the ground or first excited state of the
target Hamiltonian, Fig. S4. For short times t ≲ 1.5µs, we
observe non-zero partial chiral-chiral correlation when simu-
lating the measurement imperfections. We attribute this ef-
fect to a waiting time before the measurements. We use an
acoustic-optic modulator (AOM) to ramp down the addressing
light intensity adiabatically. We need to set the AOM at max-
imum power to perform the local rotations. This step takes
150 ns. We switch off the addressing light using the EOM
during this waiting time. When measuring for relatively early
times of the ramp, the system is quenched far from equilib-
rium and thus freely evolves for 150 ns. More particularly,
when quenched, the initial product state |↑↓ · · ·⟩ rapidly builds
up chiral-chiral correlations that we measure.

DIABATIC ERRORS IN ADIABATIC PROTOCOL

While the adiabatic protocol offers a powerful tool for the
preparation of an eigenstate, the finite duration of the adia-
batic ramp will inevitably lead to a small, but finite error. In
this section, we analyze the effect of the duration of the adia-
batic protocol (as characterized by the timescale τ of the light-
shift decay) on success probability of the adiabatic protocol
[Fig. S5]. We find that by choosing τ ≳ 0.55 µs, the popula-
tion in the target final state is above 99% and thus our protocol
is not limited by these diabatic errors.

While these diabatic errors do not affect significantly the
late time population, they can have important dynamical fea-
tures. Throughout the adiabatic protocols considered, the in-
stantaneous Hamiltonian is time reversal symmetry and, as a
result, the instantaneous eigenstates will not exhibit a non-
zero chirality. Diabatic errors break time-reversal symmetry
and can generate coherent superpositions of eigenstates that
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Figure S4. Comparison of the full chiral-chiral correlation function
⟨χAχB⟩ and measured one ⟨χAχB⟩′ with and without measurement
error (which includes both the full measurement sequence as well as
detection errors).
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Figure S5. Effect of varying τ in the adiabatic protocol patterns 1
and 2. When τ ≳ 0.55µs, the population on the final correct state is
above 99%. Simulations were performed without taking into account
imperfections in the experiment.

can exhibit non-zero chiralities. Indeed, this is what we ob-
serve [Fig. S6(a)].

Interestingly, the frequency of the oscillation provides a di-
rect probe of the system’s energy levels. Since the population
is mainly restricted to two levels, the frequency of the oscil-
lations reflects the energy difference between the ground and
the second excited state [black line in Fig. S6(a2)]

EFFECT OF EXPERIMENTAL IMPERFECTIONS IN
ADIABATIC PROTOCOL

In this section we illustrate how other imperfections in
the experiment (namely, positional disorder and initial state
preparation error) alter our adiabatic protocol. We focus on
the case of pattern 1, incorporating the two effects at a time
[Fig. S6].

As discussed in a previous appendix, positional disorder
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Figure S6. Dynamics of the adiabatic protocol for pattern 1 with
τ = 0.55µs. We compare three different scenarios: the perfect adia-
batic protocol (a), the adiabatic protocol with positional disorder (b),
and the adiabatic protocol with positional disorder and initial state
preparation error (c). The positional disorder induces a shot-to-shot
variation in the interactions of the system that is ultimately respon-
sible for the equilibration of the populations between the two lowest
energy state (State 0 and 1), causing the decay of the chiral-chiral
correlations function. By contrast, initial state preparation errors re-
sult in an overall attenuation of the signal.

can be modeled as a shot-to-shot variation of the position and
velocities of the different atoms. This change in positions im-
plies a change in the interactions between the different atoms.
As a result, each realization of the experiment will prepare a
slightly different state which will differ from the precise target
state of interest.

Dynamically, this manifests itself as a equilibration of the
populations between the ground and first excited states, the
two lowest lying states that are energetically separated from
the remaining eigenstates of the system. This can be observed
in the dynamics of the population of the perfect initial state
under the adiabatic protocol, Fig. S6(b1). At early times,
the dynamics of the populations match the disorder-free case
[Fig. S6(a1)], until around t ∼ 4µs, where the population of
the other low energy state (orange) suddenly increases until
it approximately matches the population of the target state
(blue). This explains the experimental observation of the peak
in the chiral-chiral correlations—the subsequent decay does
not arise from decoherence of the atoms, but rather the dy-
namical effect of the positional disorder [Fig. S6(b2)].

Finally, we consider also the effect of initial state prepara-
tion error. In this case, when preparing the wrong initial state,
we no longer have guarantees of preparing a state close to the
target state. As a result, we observe an overall decrease in the
signal that is consistent with the probability of preparing the
correct initial state for our 6-atom cluster (≈ 63%). Besides
this drop in the signal, all other dynamical features remain the
same.
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