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The spontaneous breaking of time-translation symmetry has led to the discovery of a new phase of
matter: the discrete time crystal. Discrete time crystals exhibit rigid subharmonic oscillations that
result from a combination of many-body interactions, collective synchronization, and ergodicity
breaking. This Colloquium reviews recent theoretical and experimental advances in the study of
quantum and classical discrete time crystals. The breaking of ergodicity is focused upon as the key to
discrete time crystals and the delaying of ergodicity as the source of numerous phenomena that share
many of the properties of discrete time crystals, including the ac Josephson effect, coupled map
lattices, and Faraday waves. Theoretically, there is a diverse array of strategies to stabilize time-
crystalline order in both closed and open systems, ranging from localization and prethermalization to
dissipation and error correction. Experimentally, many-body quantum simulators provide a natural
platform for investigating signatures of time-crystalline order; recent work utilizing trapped ions,
solid-state spin systems, and superconducting qubits are reviewed. Finally, this Colloquium
concludes by describing outstanding challenges in the field and a vision for new directions on
both the experimental and theoretical fronts.

DOI: 10.1103/RevModPhys.95.031001

CONTENTS

I. Introduction: Spontaneous Breaking of Time-Translation
Symmetry 2

II. What Defines a Time-Crystalline Phase of Matter? 3
A. Illustrative examples 5

III. Floquet Hamiltonian Systems 6
A. Faraday waves 6
B. Floquet Hamiltonians and emergent symmetries 7

1. The rotating frame: Constructing the Floquet
Hamiltonian 7

2. Time-translation symmetry breaking as internal
symmetry breaking of the Floquet Hamiltonian 8

3. The spectral perspective 9
4. Application to many-body parametric resonance 9

C. Ergodicity, destroyer of time crystals 10

*Corresponding author.
nyao@fas.harvard.edu

REVIEWS OF MODERN PHYSICS, VOLUME 95, JULY–SEPTEMBER 2023

0034-6861=2023=95(3)=031001(34) 031001-1 © 2023 American Physical Society

https://orcid.org/0000-0003-0194-7266
https://crossmark.crossref.org/dialog/?doi=10.1103/RevModPhys.95.031001&domain=pdf&date_stamp=2023-07-07
https://doi.org/10.1103/RevModPhys.95.031001
https://doi.org/10.1103/RevModPhys.95.031001
https://doi.org/10.1103/RevModPhys.95.031001
https://doi.org/10.1103/RevModPhys.95.031001


IV. Closed, Periodically Driven Quantum Systems 10
A. Introduction to quantum Floquet phases 10
B. Many-body localized discrete time crystal 12
C. Experimental signatures of disordered time crystals 12

1. Trapped ion spin chains 12
2. Spins in condensed matter 12
3. Superconducting transmon qubits 13

D. Prethermal discrete time crystal 14
1. Floquet prethermalization 14
2. Prethermal discrete time crystal

in a 1D trapped ion chain 15
E. Periodically driven Bose-Einstein condensates 16

V. Open, Periodically Driven Systems
and Stochastic Dynamics 17
A. Activated time crystals 18
B. Experimental realizations of activated time crystals:

Pendula, ac-driven charge density waves,
and fractional Shapiro steps 19

C. Ergodicity in open systems 21
D. Probabilistic cellular automata 22
E. An absolutely stable open time crystal: The π-Toom

model 22
F. Open Hamiltonian and quantum dynamics 23

VI. Outlook and Future Directions 24
A. New venues for time crystals 24

1. Quantum many-body scars 24
2. Stark time crystals 24

B. Prethermalization beyond Floquet quantum systems 24
1. Classical prethermal discrete time crystals 24
2. Higher-M discrete time crystals 24
3. Prethermal time quasicrystals 25

C. Applications: From metrology to quantum
information benchmarking 26

D. Conclusions 26
Acknowledgments 27
References 27

I. INTRODUCTION: SPONTANEOUS BREAKING
OF TIME-TRANSLATION SYMMETRY

Spontaneous symmetry breaking is a noteworthy collec-
tive phenomenon: an assembly of constituents, each inter-
acting with only its nearby neighbors, manages to align its
behavior across large spatial and temporal separations.
The concept has wide-ranging applications, from crystalline
and magnetic ordering to superfluidity, superconductivity,
and the generation of particle masses. Recently there has
been a burst of activity surrounding the spontaneous break-
ing of symmetries that involve time translation (Shapere and
Wilczek, 2012b; Wilczek, 2012; Sacha, 2015; Else, Bauer,
and Nayak, 2016; Khemani et al., 2016; Yao et al., 2017).
These explorations have exposed new phenomena and
new opportunities, but also important subtleties. In this
Colloquium, we discuss both the resulting sharpening of
theoretical concepts and the discovery of previously unsus-
pected new phases of matter. We also discuss open questions
and potential applications.
Landau-Ginzburg theory is the starting point for many

theoretical treatments of spontaneous symmetry breaking.
In a simple but representative example of this framework,
one considers the theory of a complex scalar field ϕðx; tÞ
whose equations are invariant under a phase transformation

ϕ → eiλϕ. Physically, ϕ might represent the field associated
with the creation and annihilation of bosonic particles (such as
4He atoms), s-wave spin singlet Cooper pairs, or the distri-
bution of a planar spin density. Within the Landau-Ginzburg
paradigm, a key role is played by the energy (or more
generally the free energy) of a field configuration. The
simplest energy functional consistent with symmetries is
given by

VðϕÞ ¼ b4j∇ϕj4 þ b2j∇ϕj2 þ a2jϕj2 þ a4jϕj4 ¼ H ¼ −L;

ð1Þ

where fa2; a4; b2; b4g are real-valued parameters, while H
and L denote the Hamiltonian and Lagrangian densities,
respectively. Taking a4; b4 > 0 insures stability against rapid
spatial variations and large fields.
If a2 < 0, states with hϕi ≠ 0 are energetically favorable,

spontaneously breaking the phase rotation symmetry. If
b2 < 0, states with h∇ϕi ≠ 0 are favorable, spontaneously
breaking the spatial translation symmetry and indicating the
emergence of spatial patterns. By reducing the symmetry, the
system gains a nonzero energy per unit volume. In the limit
of infinite volume, the symmetry of all physically realizable
states is less than the symmetry of the original equations.
This is the mechanism of spontaneous symmetry breaking in
equilibrium.
Physicists are accustomed, in many contexts, to treating

time and space on an equal footing. Thus, one could imagine
generalizing Eq. (1) to include time derivatives. In a
Lagrangian framework, it is natural to consider adding the
leading-order kinetic terms,

Lkin ¼ c4j∂tϕj4 þ c2j∂tϕj2; ð2Þ

which corresponds to the energy density Hkin ¼ 3c4j∂tϕj4þ
c2j∂tϕj2. For c2 < 0 and c4 > 0, it is energetically favorable to
have h∂tϕi ≠ 0, thereby implying the spontaneous breaking of
time-translation symmetry.
This line of reasoning suggests that spontaneous time-

translation symmetry breaking (SτB) is straightforward to
achieve. But subtleties abound (Shapere and Wilczek, 2012b;
Wilczek, 2012). Quantum mechanics requires Hamiltonians,
and for nonsingular Hamiltonians, Hamilton’s equations
∂tϕ ¼ ∂pH, ∂tp ¼ −∂ϕH imply that a system is stationary
at any energy minima. Thus, a ground state cannot exhibit
periodic oscillations. The behavior of Eq. (2) is able to evade
this conclusion because ∂tϕ is not a single-valued function of
the canonical momentum [i.e., pð∂tϕÞ ¼ δLkin=δ∂tϕ does not
have a unique inverse ∂tϕðpÞ] and, consequently, neither is the
Hamiltonian (Shapere and Wilczek, 2012b). This is not
necessarily an insurmountable problem. Indeed, for such
singular Hamiltonians it is often possible to construct con-
sistent (in particular, unitary) quantum theories that realize the
corresponding classical dynamics in the limit of large quan-
tum numbers (Shapere and Wilczek, 2012a, 2012b; Zhao, Yu,
and Xu, 2013; Chi and He, 2014; Choudhury and Guha,
2019). Moreover, singular Hamiltonians that support time-
dependent minima can arise as limiting cases of nonsingular
Hamiltonians as appropriate parameters are taken large.
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A limiting theory can be valuable because it is often more
tractable than the full theory while being accurate within a
large range of parameter space (Dai et al., 2019; Shapere
and Wilczek, 2019; Alekseev, Dai, and Niemi, 2020; Dai,
Niemi, and Peng, 2020). However, away from this limit
several studies (Bruno, 2013; Nozières, 2013; Watanabe
and Oshikawa, 2015) have argued that persistent oscillations
cannot arise in a quantum system that is in equilibrium with
respect to a local Hamiltonian.
These subtleties suggest that the application of the Landau

paradigm to SτB may not be as easy as Eq. (2) would lead us
to believe. An additional necessary ingredient for SτB is a
robust mechanism for ergodicity breaking that enables the
dynamics of the system to “remember” the initial condition
(such as the complex phase of ϕ) out to infinite times.
Spontaneous symmetry breaking is a special case of ergodicity
breaking. Focusing on this aspect of spontaneous symmetry
breaking leads to the following formulations of SτB: it is a
form of ergodicity breaking in which a generic ensemble of
initial conditions exhibits persistent oscillations with a tem-
poral phase shift that remembers the initial condition;
cf. Eq. (3).
In recent years, a nonequilibrium route to SτB has been

discovered in the context of Hamiltonians periodically
driven at frequency ωD. Such “Floquet” systems (Floquet,
1883) feature a reduced, discrete time-translation symmetry
Hðtþ 2π=ωDÞ ¼ HðtÞ, where T0 ¼ 2π=ωD is the driving
period. When a simple harmonic oscillator is driven at
frequency ωD, it responds at frequency ωD regardless of its
natural frequency. This is true even of many nonlinear systems
that are far more complex: when driven at frequency ωD, their
observable properties respond at integer harmonics of ωD
regardless of their detailed structure. In this case, the observ-
able behavior evolves with the same discrete time-translation
symmetry as the underlying equations of motion. In contrast, a
system is said to exhibit a subharmonic response if there are
properties that oscillate at frequency ωD=m for some integer
m > 1. Such a subharmonic response spontaneously breaks
the discrete time-translation symmetry down to the smaller
subgroup t → tþ 2πn=ωD with n ∈ mZ. If this SτB is stable
to perturbations, the system is a “discrete time crystal” (Sacha
and Zakrzewski, 2018; Khemani, Moessner, and Sondhi,
2019; Else et al., 2020; Guo and Liang, 2020; Sacha, 2020).
Owing to the periodic drive, it is not obvious how to

stabilize such behavior. Within the Landau paradigm, sponta-
neous symmetry-breaking phases retain their order in the face
of fluctuations (both thermal and quantum) by virtue of the
energy penalty associated with misaligned regions. But this is
not possible for a discrete time crystal, since energy is not
conserved in a driven system. The oscillations in distant parts
of the system must remain in lockstep even though the energy
penalty for failing to do so can easily be overridden by the
energy supplied by the drive.
The aim of this Colloquium is to give a unifying perspective

on various nonequilibrium mechanisms for discrete SτB in
closed (Fig. 1) and open systems (Fig. 2). By centering our
discussion in the language of dynamical systems, we highlight
the connections (and contrasts) between the rich literature on
subharmonic responses in dynamical systems and more recent
developments in the context of closed quantum systems. Until

recently many-body systems exhibiting SτB, such as period
doubling in coupled map lattices, were found only in open
systems that rely fundamentally on dissipation. They could be
viewed as a type of engine: the energy supplied by the
frequency-ωD drive is converted to frequency-(ωD=m) motion
while releasing heat to a cold bath. With the discovery of
many-body localized (MBL) discrete time crystals, a quali-
tatively different form of SτB was discovered: one that does
not generate any entropy at all.
In a MBL time crystal, the timescale of SτB oscillations

diverges exponentially as the system size alone is increased.
However, for practical purposes it is also of interest to know
whether there are other physical parameters whose limiting
behavior can drive such an exponential increase, for example,
the drive frequency ωD → ∞, the temperature T → 0, or the
particle density n → ∞. This will lead us to the notion of
prethermal, activated, and driven Bose-Einstein condensate
(BEC) time crystals, respectively. A key tool that is common
to these “exponentially good” time crystals and to their MBL
counterpart is the emergence of an effective time-independent
Floquet Hamiltonian Heff , which governs the dynamics out to
exponentially long timescales. Heff can exhibit emergent
symmetries that are protected by the underlying time-trans-
lation symmetry of the drive. In a pleasing return to form, SτB
can then be understood in terms of the breaking of these
emergent symmetries and as an application of the Landau
paradigm not to HðtÞ but rather to Heff .
In the setting of Floquet dynamics, the environment couples

to the system only via a coherent drive. But in any physical
experiment, the environment itself is a many-body system, and
thus coupling to it inevitably comes along with dissipation and
noise. Indeed, all experiments on discrete time crystals to date
have shown their fingerprints. The possibility of perfect SτB
in the presence of a drive, dissipation, and noise remains an
open question.
The outlines of a possible answer to this question are

provided by deep results from theoretical computer science
and nonequilibrium statistical physics. As emphasized, SτB is
fundamentally a form of ergodicity breaking, and there is a
history of rigorous results from these communities that show
that ergodicity breaking can be generically stable to noise
(Toom, 1980; Gács, 2001). In that context, the motivation was
to understand whether “reliable systems can emerge from
unreliable components” (Von Neumann, 1952). The answer to
this question is inextricably linked to the physical possibility
of the most radical form of ergodicity breaking of all: classical
and quantum error correction. From this perspective, if purely
dissipative time crystals are a form of engine and MBL time
crystals are a type of idealized perpetual motion, then SτB in
open systems is an embryonic example of an error-corrected
computer program: repeatedly applying the same NOT oper-
ation to all registers, the computer settles into the period-2
output …0101010101….

II. WHAT DEFINES A TIME-CRYSTALLINE
PHASE OF MATTER?

Discrete SτB leads to regular and long-lived oscillations
with a period that is a multiple of the drive’s. Oscillations in
general, however, are ubiquitous throughout nature, so in this
section we formalize when such behavior signals the emer-
gence of a genuine phase of matter. Our starting point is any
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dynamical system (Birkhoff, 1927; Katok and Hasselblatt,
1997; Strogatz, 2018) whose state x evolves under a discrete-
time update rule Φ∶x → ΦðxÞ. The state of the system at time
step t is thus xðtÞ ¼ ΦðtÞ(xð0Þ), where the superscript denotes
iteration. The time independence of Φ implies that there is a
discrete time-translation symmetry. While the notation high-
lights a discrete time step, Φ may arise from viewing a
continuous-time system “stroboscopically.” In the context of
classical and quantum dynamics defined by the time-periodic
Hamiltonian Hðtþ TÞ ¼ HðtÞ, x is the classical or quantum
state andΦ corresponds to integration of Hamilton’s equations
or the Schrödinger equation over one period of the drive.
The dynamics exhibit m-fold time-translation symmetry

breaking if there is a local observable O that exhibits periodic
oscillations out to infinite times for a measurable volume of
initial conditions x:

lim
τ→∞

1

τ

Xτ

n¼1

O(ΦðmnÞðxÞ) ≠ lim
τ→∞

1

τ

Xτ

n¼1

O(ΦðmnþpÞðxÞ); ð3Þ

where 0 < p < m corresponds to the m phases of the
orbit, with equality restored for p ¼ m. A time crystal thus
remembers which of the m initial conditions it is in. This
implies that SτB is a particular form of ergodicity breaking

(Sinai, 1959; Walters, 2000; Cornfeld, Fomin, and Sinai,
2012): the time-averaged behavior of the m-fold iterated map
ΦðmÞ depends on the initial condition. This behavior has been
called asymptotic periodicity in the literature on classical
many-body dynamical systems (Lasota, Li, and Yorke, 1984;
Losson and Mackey, 1996; Lasota and Mackey, 2013). While
Eq. (3) implies infinitely long-lived oscillations, we may also
consider a relaxed condition in which the timescale τ remains
finite but diverges exponentially with a control parameter such
as the drive frequency or temperature. This will be the case
for prethermal (Sec. IV.D) and activated (Sec. V.A) time
crystals, respectively.
We emphasize that SτB does not require each state x to

itself undergo perfectly periodic motion, only that there is an
observable O that oscillates on average. For example, in the
context of a single variable x, the observable OðxÞ ¼ sgnðxÞ
might exhibit regular oscillations even while the motion of x
itself is quite chaotic. This accounts for the fact that we rarely
have direct access to the microstate of the system, only to
coarse-grained measurements. This limitation also motivates
the requirement that oscillations be observable for a finite
volume of initial conditions, over which we rarely have exact
control. Taken together, an equivalent formulation of Eq. (3)
takes a statistical point of view by considering the evolution of

FIG. 1. Schematic depicting strategies for stabilizing time-crystalline order in periodically driven, closed systems evolving via
deterministic dynamics. In few-body classical systems such as a parametrically driven nonlinear oscillator, stable subharmonic
responses are ubiquitous. This stability can be understood as a time-dependent extension of the Kolmogorov-Arnold-Moser (KAM)
theorem (Kolmogorov, 1954; Möser, 1962; Givental et al., 2009), which proves that quasiperiodic orbits of dynamical systems remain
robust to small perturbations (Sec. III.B.4). There is no quantum analog to this classical few-body strategy. For many-body systems, both
classical and quantum dynamics can exhibit Floquet prethermalization in the limit of large driving frequencies (Sec. IV.D). During an
intermediate prethermal window of time (i.e., before Floquet heating occurs), the system can exhibit discrete time-crystalline order. The
lifetime of this order scales exponentially with the frequency of the drive (τ ∼ eωD=J). In strongly disordered, quantum many-body
systems, a phenomenon known as many-body localization can occur. This prevents Floquet heating (see Sec. III.C) and also provides a
mechanism for the many-body system to avoid becoming ergodic. By breaking ergodicity, time-crystalline order can persist to infinite
times in the thermodynamic limit. Since many-body localization relies upon the discreteness of quantum mechanical levels, there is no
classical analog to this strategy. Left panel inset: adapted from Heltberg et al., 2016. Middle panel inset: adapted from Kyprianidis et al.,
2021. Right panel inset: adapted from Yao et al., 2017.
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distributions over microstates ρðxÞ; we return to this formu-
lation in our discussion of stochastic systems in Sec. V.
Even a single degree of freedom can trivially exhibit SτB:

take the mapΦðxÞ ¼ −x. The problem gains its richness when
we demand stability: SτB is a property of a dynamical phase
of matter if it is robust to any small locality-preserving
perturbation of either the initial condition x or the dynamics
Φ. Under the perturbation ΦðxÞ → −xð1 − ϵÞ, oscillations are
damped at times beyond τ ∼ ϵ−1 and SτB is destroyed.
When discussing stability, we need to be clear which

class of perturbations we demand stability against.
Correspondingly this defines different possible classes of
SτB phases (Hamiltonian, unitary, Langevin, quantum
Lindbladian, etc.) that would exhibit SτB robust to arbitrary
small perturbations within that dynamical class. Depending on
how broadly or narrowly we define stability, there are more or
fewer examples, but weaker or stronger implications.

A. Illustrative examples

The requirements surrounding Eq. (3) contain several
subtleties, so it will prove helpful to walk through several
examples of “is X a time crystal” with these in mind. We first
focus on examples that do exhibit oscillations (and are

interesting in their own right) but which do not satisfy the
strict requirements of Eq. (3).
Consider first the dynamics of an undriven oscillator

H ¼ p2=2mþ ðω2
0=2mÞq2 þ ðϵ=4Þq4. Any initial condition

x ¼ ðq; pÞ will oscillate forever: do such oscillations con-
stitute a discrete time crystal? Since H is time independent,
for the purposes of testing Eq. (3) we may choose to
stroboscopically observe the dynamics at whichever period
T we suspect harbors the oscillations (say, T ¼ 2π=ω0).
However, stability requires us to account for the nonlinearity
ϵ, which causes the oscillation frequency to depend on the
amplitude of the initial condition. As a result, there is no fixed
period T for which Eq. (3) is satisfied for a finite volume of
initial conditions: a generic ensemble of states will instead
dephase, with no SτB after some characteristic time τ.
The timescale τ for such dephasing may be large, in which

case the dynamics may appear to exhibit SτB in practice even
while they do not satisfy Eq. (3) in principle. Consider, for
example, the ac Josephson effect,

H ¼ −EJ cosϕþ 2eVnþ n2

2C
. ð4Þ

FIG. 2. Schematic depicting strategies for stabilizing time-crystalline order in periodically driven, open systems evolving via stochastic
dynamics. Dissipative nonlinear dynamical systems have long been known to exhibit stable, many-body time-translation symmetry
breaking. Indeed, coupled map lattices can satisfy all of the stated requirements for being a discrete time crystal. The key ingredient for
the stability of SτB in this setting is a generalized version of dissipation; effectively, one can think of the microscopic dynamics in such
systems as being coupled to a zero-temperature bath (alternatively, one can say that the microscopic dynamics are not information or
measure preserving). This ensures that a finite volume of initial conditions contracts toward a period-doubled fixed point (Sec. II.A). The
stability of time-crystalline order in many-body systems coupled to a finite-temperature bath is significantly more subtle. For example,
in classical Langevin dynamics or quantum Lindbladian dynamics, at any T > 0 dissipation always comes with noise. In such systems
(for instance, finite-temperature, parametrically driven, coupled nonlinear pendula), at low temperatures time-crystalline order can
survive for an “activated” timescale ∼eΔ=kBT (Sec. V.A). Somewhat surprisingly, by considering more generic stochastic dynamics (i.e.,
probabilistic cellular automata), it is possible to realize finite-temperature, time-crystalline order with an infinite lifetime (Sec. V.E). Left
panel inset: adapted from Kaneko, 1984. Middle panel inset: adapted from Hundley and Zettl, 1989. Right panel inset: adapted from
Vasmer, 2020.
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In Eq. (4) ϕ is the superconducting phase difference across a
Josephson junction, which is conjugate to the Cooper pair
number n; EJ is the Josephson energy for the tunneling of a
pair across the junction, C is the junction capacitance, and V is
the voltage difference across the junction. For a large junction,
the capacitance approaches C ¼ ∞, and the equations of
motion then give ϕðtÞ ¼ ϕ0 þ 2eVt, implying that the super-
current Is ¼ _n ¼ EJ sinðϕÞ oscillates indefinitely in response
to a dc voltage. However, for the generic case in which C is
finite, a shift of variables from n → n − 2eVC brings H to
the form of a pendulum whose behavior is similar to the
previously discussed nonlinear oscillator. The timescale for
the resulting dephasing τ ¼ ffiffiffiffiffiffiffiffiffiffiffi

C=EJ

p
may be large, though we

point out that this dependence is not an exponential. In
experiments, Josephson junctions are generally resistively
shunted, and related interesting phenomena arise in this open
context, as discussed in Sec. V.
Another interesting limit of Eq. (4) is EJ ¼ 0, in which case

H has an internal Uð1Þ phase symmetry that guarantees that
_ϕ ¼ 2eV þ n=C will remain constant. In this case, the
oscillation period is T ¼ 2π= _ϕ, and this is an example of
SτB that “piggybacks” on the spontaneous symmetry break-
ing of an unrelated internal symmetry. Equivalent examples
are superfluids at nonzero chemical potential and an XY
magnet in a perpendicular field. Such systems have a Uð1Þ
order parameter that precesses in time for generic initial
conditions. The precession is unobservable (for example,
Is ¼ 0) unless the Uð1Þ symmetry, which makes all angles
equivalent, is broken. But in the absence of Uð1Þ symmetry,
there is no barrier to energy dissipating from the macroscopic
precession of the order parameter into the internal motion of
its many-body constituents. At long times the system then
relaxes to a state (e.g., vanishing particle number in the
superfluid or spin aligned with the field in the magnet)
wherein macroscopic motion ceases. To navigate this
dichotomy, one must shield the system from explicit sym-
metry breaking apart from brief, intermittent measurement
events, as in the experiment of Urbina, Jacquinot, and
Goldman (1982). In this case, SτB is stable only to perturba-
tions that preserve the internal symmetry. In contrast, as we
explore in this Colloquium, a stronger form of SτB is possible
that depends only on the time-translation symmetry itself.
A many-body example that does satisfy all the requirements

surrounding Eq. (3) is period doubling in deterministic dissi-
pative systems. An iterated map x → fðxÞ such as the logistic
map (Strogatz, 2018) provides an idealized model of the unit-
time evolution of such a system. Taking, for example, fðxÞ ¼
−xð1þ a − x2Þ, there is a basin of attraction of initial states
that settle into a limiting oscillation between x ¼ � ffiffiffi

a
p

when
a > 0. This simple one-body example can be promoted to a
many-body model (a “coupled map lattice”) by considering an
array of variables xi that evolve under Φ∶xi → fðxiÞ þ
vðxi−1; xi; xiþ1Þ with some generic local interaction v. The
behavior of coupled map lattices is very rich, since they
include cellular automata (Gutowitz, 1991) as a special case
(Kaneko, 1984, 1992; Kapral, 1985; Kaneko and Konishi,
1987; Bunimovich and Sinai, 1988). Coupled map lattices can
support collective subharmonic responses (Losson, Milton,
and Mackey, 1995; Losson and Mackey, 1996; Gielis

and MacKay, 2000) that are stable to smooth perturbations
of f or v.
There are many other examples of dissipative systems with

spontaneous oscillations. For example, the van der Pol
oscillator, ẍ ¼ μð1 − x2Þ _x − x is a continuous-time system
that exhibits a closed “limit cycle” orbit with xðtþ TÞ ¼ xðtÞ
(van der Pol, 1920; Odani, 1995). Because of dissipation,
small perturbations to the limit cycle decay, so that at long
times a finite volume of initial states (i.e., neighboring
trajectories) flow toward the limit cycle (Strogatz, 2018).
Much like the logistic map, this single-body behavior can be
extended to many degrees of freedom by coupling such
systems together, leading to arrays of coupled limit-cycle
oscillators (Aizawa, 1976; Kuramoto and Nishikawa, 1987;
Matthews and Strogatz, 1990; Palacios et al., 2005; Lauter et
al., 2015). Despite the continuous-time dynamics, from the
perspective of time-translation symmetry breaking, the phys-
ics of limit cycles is conceptually similar to the previously
discussed discrete-time examples, such as the logistic map.
This connection can be made precise by viewing the differ-
ential equation at stroboscopic times (via a so-called first-
recurrence or Poincaré mapping), wherein the continuous-
time dynamics defines a coupled map lattice. One difference
from examples of discrete SτB is that the period T of the cyclic
orbit varies continuously with the model parameters. This is
precisely because there is no external drive to set the
frequency of the response. However, by adding a small
periodic drive, the period T can be “entrained” (locked) to
a subharmonic of the drive (Flaherty and Hoppensteadt, 1978;
Storti and Rand, 1988), resulting in rigid SτB.

III. FLOQUET HAMILTONIAN SYSTEMS

As noted, if we consider systems with dissipation but no
noise, such as a coupled map lattice, it is relatively straight-
forward to obtain stable, many-body SτB. This is the classical
zero-temperature limit of the general open system problem
that we discuss in Sec. V. These systems illustrate that the
existence and stability of time crystals depends strongly on
the class of dynamical system considered (open or closed,
classical or quantum). The presence of dissipation leads to a
fixed-point orbit about which the linearized dynamics have
eigenvalues jλj < 1, such that a finite volume of initial
conditions contracts toward the fixed point. In contrast, for
the canonical transformation that arises from integrating
Hamilton’s equations over one Floquet period, the eigenvalues
always come in conjugate pairs λ1λ2 ¼ 1 in order to ensure
that the phase-space volume dq ∧ dp is preserved in accord
with Liouville’s theorem. In this section, we discuss why
stable SτB, i.e., an infinitely long-lived time crystal, is not
expected to occur in such a situation.

A. Faraday waves

To illustrate why Hamiltonian structure makes the possibil-
ity of SτB considerably more challenging, we consider the
concrete example of Faraday-wave instabilities in shaken
surface waves. Faraday observed that when a container of
water with a liquid-air interface is shaken vertically at
frequency ωD, surface waves develop that oscillate at frequen-
cies ω ¼ ðn=mÞωD, which are rational subharmonics of the
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drive (Faraday, 1831; Rayleigh, 1883a). The subharmonics
can be understood as standing-wave modes that are forced
via parametric resonance (Rayleigh, 1883b). A precise math-
ematical understanding of the instability is obtained by
linearizing the incompressible Euler equations for surface
waves (Benjamin and Ursell, 1954) in the presence of periodic
acceleration. This reduces the problem to a set of “Mathieu
equations” for each Fourier component of the surface height q,

q̈k ¼ −½ω2
k þ δk cosðωDtÞ�qk; ð5Þ

where qk is the amplitude of the surface wave at wave vector k,
ωk is the natural frequency of the surface wave, and δk is
proportional to the driving amplitude. The Mathieu equation
features an exponentially growing solution (which looks
precisely like a subharmonic response) of the approximate
form ∼etΓ cosðtωD=2þ θÞ when a mode satisfies ωD ∼ 2ωk
(McLachlan, 1947). As we discuss, the nonlinearity then
regulates the blowup and stabilizes SτB. Since the Euler
equations are Hamiltonian (Olver, 1982), it might seem that
Faraday-wave instabilities then provide a Hamiltonian exam-
ple of SτB.
However, while this analysis implies a linear subharmonic

instability, it does not resolve whether the motion at long times
is an example of SτB in the strong sense. While the non-
linearities that are generically present have the favorable
property of regulating the exponential blowup, they also
couple different k modes. A generic initial condition will
contain some energy in these high-k modes, which will then
act as an effectively noisy force on the motion of the kmode in
which one is hoping to observe stable SτB. The key question
can then be summarized as follows: Does SτB survive when
treating the Faraday-wave problem as a genuine nonlinear
many-body system and, if not, what governs the autocorre-
lation time of the long-lived subharmonic response manifestly
seen in experiments?

B. Floquet Hamiltonians and emergent symmetries

To answer this question, it proves helpful to walk through a
specific example and develop some intuition along the way. To
this end, we work through the example of a shaken nonlinear
pendulum (i.e., a parametrically driven nonlinear oscillator);
for a single pendulum (and even in the few-body case), we see
in this section that one naturally gets stable SτB as a conse-
quence of the Kolmogorov-Arnold-Moser (KAM) theorem
(Kolmogorov, 1954; Möser, 1962; Givental et al., 2009). In a
truly many-body system, however, SτB becomes unstable. We
argue that there is an intuitive general mechanism underlying
this obstruction: ergodicity. Along the way, we introduce and
develop a particularly important construct, namely, the
Floquet Hamiltonian, which will provide a unifying frame-
work for understanding many versions of SτB in closed
Hamiltonian systems (both quantum and classical).
Consider the following Hamiltonian for a shaken nonlinear

pendulum:

Hðq; p; tÞ ¼ p2

2
þ ω2

0

2
½1þ δ cosðωDtÞ�q2 þ

ϵ

4
q4: ð6Þ

To connect to the previous Faraday-wave discussion, the
reader may think of this pendulum as a specific kmode, where
we are now explicitly accounting for the nonlinearity but
neglecting the intermode coupling. The linearized equations
of motion give rise to the Mathieu equation [cf. Eq. (5)] and
the goal, with respect to time-crystalline order, would be to
prove that the nonlinearity stabilizes SτB.

1. The rotating frame: Constructing the Floquet Hamiltonian

Near a period-doubled solution of Eq. (6), one expects on
physical grounds that trajectories should approximately take
the form

qðtÞ − ipðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2PðtÞ

p
ei½ωDt=2þQðtÞ�; ð7Þ

where QðtÞ and PðtÞ are slowly varying in comparison to ωD.
The transformation that takes ðq; pÞ → ðQ;PÞ is a time-
dependent canonical transformation, which we denote by
K0ðtÞ; this transformation can be thought of as taking the
system to a particular “rotating frame” [Fig. 3(a)]. Note that
the period of the rotation is subharmonic, K0ðmTÞ ¼ K0ð0Þ
(in the period-doubled case, m ¼ 2). In the rotating frame, the
Hamiltonian HðQ;P; tÞ is still time dependent, but the natural
frequencies of the system [i.e., those that govern the slowly
varying motion of QðtÞ, PðtÞ] are now off resonant with ωD.
Thus, one can attempt to follow up with a second trans-
formation in order to generate a completely time-independent
Floquet Hamiltonian HF (Holthaus, 1995; Buchleitner,
Delande, and Zakrzewski, 2002; Else, Bauer, and Nayak,
2017; Else, Ho, and Dumitrescu, 2020). The second trans-
formation takes the form of a so-called Magnus expansion and
the composite transformation is given by KðtÞ ¼ KMagnusðtÞ ∘
K0ðtÞ, again with KðmTÞ ¼ Kð0Þ. In summary, the strategy is

E
MI

T

P

Q

(a) (b)

FIG. 3. (a) Schematic depiction of a time-dependent rotating
frame, which transforms the original time-dependent HðtÞ into
the time-independent Floquet Hamiltonian HF. Time-translation
symmetry breaking (here with a periodm ¼ 2) can be understood
as spontaneous symmetry breaking of an internal Zm symmetry
of the Floquet Hamiltonian. Adapted from Yao and Nayak, 2018.
(b) Contours of equal “quasienergy” HFðQ;PÞ for a nonlinear
parametric oscillator near a 2∶1 resonance. The original coor-
dinates of the oscillator q and p are related to the coordinates Q
and P through a time-dependent canonical transformation
given approximately by Eq. (7). The two minima of HF, at
which ðQ;PÞ are time independent, map back to the two exactly
period-doubled orbits, q�ðtÞ ¼ −q�ðtþ T0Þ. As predicted by
Eq. (11), time-translation symmetry manifests as a Z2 symmetry
HFðQþ π; PÞ ¼ HFðQ;PÞ. Adapted from Zounes and Rand,
2002.
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to find a canonical transformation KðtÞ∶ðq; pÞ → ðQ;PÞ such
that the transformed Hamiltonian HFðQ;PÞ is time indepen-
dent. This idea that Hðq; p; tÞ might actually be equivalent to
an equilibrium system (i.e., governed byHF) in an appropriate
time-dependent rotating frame was referred to as “crypto-
equilibrium” by Yao and Nayak (2018) and Else et al. (2020).
We emphasize that a priori the Magnus expansion may not

converge, in which case the pair of objects fKðtÞ; HFg need
not exist: this will be the precise obstruction to stable SτB in
the many-body Faraday-wave case. Note that in the quantum
setting (which we soon return to), one can in principle always
define a Floquet Hamiltonian by taking the logarithm of
the Floquet unitary; thus, in this case, one should replace the
just-mentioned “need not exist” with the fact that HF will be
highly nonlocal.
As a preview, we note that the distinction between a true

discrete time crystal (Sec. IV.B) and the prethermal discrete
time crystal (Sec. IV.D) can precisely be understood as
whether the Magnus expansion converges. In the former case,
it does and one has a well-defined Floquet Hamiltonian HF,
while in the latter case it almost does, leading to

HðQ;P; tÞ ¼ HeffðQ;PÞ þ VðtÞ: ð8Þ
In Eq. (8) Heff is an effective Hamiltonian that captures the
system’s stroboscopic dynamics for exponentially long time-
scales and VðtÞ is the exponentially small residual time
dependence that cannot be “rotated” away by the Magnus
expansion.
The concept of a rotating frame transformation in the

quantum case is completely analogous. In particular, within
the quantum setting the dynamics are captured by a unitary
time-evolution operator

Uðt1; t0Þ ¼ T exp

�
−i

Z
t1

t0

HðtÞdt
�
; ð9Þ

where T represents time ordering. In this case, KðtÞ is a
unitary transformation chosen such that the time-evolution
operator Uðt1; t0Þ decomposes as

Uðt1; t0Þ ¼ K−1ðt1Þe−iðt1−t0ÞHFKðt0Þ; ð10Þ
with KðmTÞ ¼ Kð0Þ and HF suitably local. KðtÞ is referred
to as the “micromotion” since it contains the components of
the dynamics at harmonics of ωD=m, while the “slow” part of
the motion resides in HF (Shirley, 1965; Zel’Dovich, 1973;
Buchleitner, Delande, and Zakrzewski, 2002; Rahav, Gilary,
and Fishman, 2003; Bukov, D’Alessio, and Polkovnikov,
2015; Eckardt and Anisimovas, 2015). When one restricts
to the stroboscopic dynamics, the “Floquet unitary” that
implements a single discrete time step is given by UF ¼
UðT; 0Þ ¼ K−1ðTÞe−iTHFKð0Þ. To ensure that the connection
to the notation in Eq. (3) is clear, we note that Floquet unitary
UF then furnishes the dynamical map Φ, which acts on the
quantum state x ¼ jψi.

2. Time-translation symmetry breaking as internal symmetry
breaking of the Floquet Hamiltonian

If the micromotion is periodic [KðTÞ ¼ Kð0Þ], there can be
no SτB since the stroboscopic dynamics become canonically

equivalent to the undriven dynamics of HF, and SτB is
forbidden in equilibrium (Bruno, 2013; Watanabe and
Oshikawa, 2015). But in a time crystal, the frame rotates
subharmonically [Fig. 3(a)], i.e., KðmTÞ ¼ Kð0Þ, and the
transformation X ¼ Kð0ÞK−1ðTÞ is nontrivial. The transfor-
mation X then plays a crucial role since it permutes through
the m cycles of the subharmonic response. In the specific
case of the shaken nonlinear pendulum [cf. Eq. (7)], for
example, X∶ðQ;PÞ → ðQþ π; PÞ. We expand upon this
discussion in Sec. III.B.4.
Under rather general conditions, the Magnus expansion can

be constructed to ensure that X ¼ KðnTÞK−1ðnT þ TÞ is
independent of n (Else, Bauer, and Nayak, 2017; Else, Ho,
and Dumitrescu, 2020; Machado et al., 2020), which then
ensures that Xm ¼ I. Substituting Eq. (10) into the time-
translation symmetry UðT; 0Þ ¼ Uð2T; TÞ, one finds that

X−1e−iTHFX ¼ e−iTHF : ð11Þ
In other words, X is an internal Zm symmetry of the Floquet
Hamiltonian (Holthaus, 1995; Buchleitner, Delande, and
Zakrzewski, 2002; von Keyserlingk, Khemani, and Sondhi,
2016; Else, Bauer, and Nayak, 2017). While the emergence of
an internal symmetry may seem mysterious, it is really just a
reexpression of the original discrete time-translation sym-
metry in a frame that is rotated by X at each step [Fig. 3(a)].
Else, Ho, and Dumitrescu (2020) referred to this intertwining
as twisted time translation. However, the emergence of such
a symmetry was pointed out well before the recent interest
in SτB; see the extensive literature on nonspreading
wave packets in periodically driven systems (Holthaus and
Flatté, 1994; Holthaus, 1995; Buchleitner, Delande, and
Zakrzewski, 2002).
The existence of a Floquet Hamiltonian HF and an

emergent symmetry X immediately leads to the possibility
of SτB. In particular, suppose that the dynamics of HF
spontaneously break the X symmetry. Intuitively, this means
that the state space breaks up into m “superselection” sectors
that are permuted by the action of X but that are not connected
by evolution under HF. In the rotating frame, a trajectory thus
gets stuck within a sector and, mapping back to the lab frame
usingK−1ðtÞ, one finds that the average behavior will oscillate
with period m. More rigorously symmetry breaking implies
that there are m different initial conditions yj ¼ ðQj; PjÞ that
are related by the symmetry (yjþ1 ¼ Xyj). The time-averaged
behaviors of these different initial conditions are distinct (in
the rotating frame); for instance, there are local observables O
with ŌðyjÞ≡ð1=τÞPτ

n¼0O(yjðnTÞ)≠ Ōðyjþ1Þ. Transforming
back to the lab frame xjðtÞ ¼ K−1ðtÞyjðtÞ and substituting in
the definitions, one immediately finds that the definition of
time-crystalline order [cf. Eq. (3)] is satisfied.
One thus arrives at a correspondence between m-fold SτB

and the more familiar notion of Zm-spontaneous symmetry
breaking with respect to HF (in the rotating frame). This
illustrates a general principle of all closed Hamiltonian many-
body time crystals discovered thus far (Fig. 1): In a
Hamiltonian time crystal, the discrete time-translation
symmetry of HðtÞ manifests as a spontaneously broken
internal Zm symmetry of the Floquet Hamiltonian HF (von
Keyserlingk, Khemani, and Sondhi, 2016; Else, Bauer, and
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Nayak, 2017; Else, Ho, and Dumitrescu, 2020). In a sense this
bring us back full circle to our starting inspiration, the Landau
paradigm (Sec. I), with the crucial replacement H → HF.

3. The spectral perspective

While the previously mentioned formalism applies equally
well to the classical and quantum settings, in the quantum case
an equivalent definition can be given in terms of the spectral
properties of the Floquet operator UF alone (Holthaus, 1995;
Buchleitner, Delande, and Zakrzewski, 2002; Sacha, 2015):
a discrete time crystal is a phase of matter in which the
eigenstates of UF are necessarily “cat states,” i.e., super-
positions of macroscopically distinct states (Else, Bauer, and
Nayak, 2016). This is a direct generalization of the statement
that when a conventional symmetry is spontaneously broken
in an equilibrium system, the low-energy eigenstates that
transform simply under the symmetry [such as eigenstates of
the center or Cartan subalgebra (Fulton and Harris, 2013) of
the symmetry group] are necessarily cat states.
To unpack this definition we investigate the implications of

Sec. III.B.2 for the “Floquet eigenstates” UFjεFi¼e−iTεF jεFi.
Here the quasienergies εF are defined modulo the driving
frequency εF ≡ εF þ ωD. As discussed, UF exhibits SτB
when there is a decomposition UF ¼ Xe−iTHF for which
HF spontaneously breaks the symmetry ½X;HF� ¼ 0. In the
thermodynamic limit, spontaneous symmetry breaking
implies that the eigenstates of HF come in degenerate pairs
permuted by the symmetry Xj↑i ¼ j↓i (we focus on X2 ¼ 1
for simplicity).1 However, in a finite system the eigenstates of
HF must simultaneously diagonalize X, so they come in pairs
j�i ¼ ð1= ffiffiffi

2
p Þðj↑i � j↓iÞ with eigenvalues ϵ� ¼ ϵ� Δ,

which are split by an amount Δ ∼ e−L=ξ that is exponentially
small in the system size L if the system is to exhbit true SτB.
The eigenstates of HF are thus cat states since the constituent
j↑=↓i are macroscopically distinct. The quasienergies of UF

are then obtained by including their eigenvalue under X: ϵþF ¼
ϵþ Δ and ϵ−F ¼ ϵ − Δþ ωD=2. The spectrum of UF thus
consists of pairs of cat states with eigenvalues that differ by
ωD=2 up to exponential accuracy in L.
To relate this spectral property back to Eq. (3), note that an

initial state jxi will generically have amplitudes on both the
jþi and j−i states of each pair. Owing to the eigenvalue
pairing, the system will thus coherently oscillate at frequency
ωD=2, up to a dephasing time τ ∼ Δ−1 that diverges exponen-
tially in L.

4. Application to many-body parametric resonance

We now see how the formalism from Secs. III.B.1
and III.B.2 plays out for a single parametrically driven
nonlinear pendulum; cf. Eq. (6). Chirikov (1979) and

Zounes and Rand (2002) showed that HFðQ;PÞ indeed exists
within a finite volume of phase space (calling it the resonance
Kamiltonian) and that, courtesy of the KAM theorem, its
existence is stable to small perturbations. The contours of
equal quasienergy HFðQ;PÞ are shown in Fig. 3(b). As
mentioned, we see that HF exhibits a Z2 symmetry
X∶Q → Qþ π, which exchanges two local minima enclosed
by a separatrix. The detailed construction of KðtÞ is involved,
but the approximate intuition is as follows: One starts with the
canonical transformation in Eq. (7) and removes the residual
time dependence order by order through a sequence of
transformations whose convergence is guaranteed by the
KAM theorem. The two minima of HF [Q;P¼ð�π=2;P�Þ]
are fixed points of HF; mapping back to the lab frame, one
obtains two precisely period-doubled orbits related by time
translation, K−1ðtÞ∶ð�π=2; P�Þ → q�ðt� T=2Þ; p�ðtÞ. Small
deviations from the minima circulate around quasienergy
contours, corresponding to slow oscillations about the
period-doubled motion. Similar behavior is seen in other
periodically driven problems, such as the kicked rotor model,
whose stroboscopic motion Φ reduces to Chirikov’s standard
map (Chirikov, 1979) or a particle bouncing off an oscillating
mirror (Holthaus and Flatté, 1994; Holthaus, 1995). In this 0D
case, the SτB arises because KAM stability allows the
quasienergy to “split up” the fQ;Pg space into disconnected
basins [Fig. 3(b)], rather than because of a collective phenom-
ena. Furthermore, in 0D there is long-range order in time but
not in space, and as such one may prefer to not consider this
case a time crystal. This analysis also illustrates why the
quantum version of a parametrically driven nonlinear oscil-
lator will not feature infinitely long-lived SτB: while a
quantum Floquet Hamiltonian with a Z2 symmetry may exist,
for any finite barrier height there will be quantum tunneling
between the two minima at a rate ∼1=τ. This leads to a unique
Z2-symmetric steady state, and the subharmonic response
will have a correlation time of τ. Holthaus and Flatté (1994),
Holthaus (1995), Buchleitner, Delande, and Zakrzewski
(2002), and Sacha (2015) analyzed several examples of such
quantum subharmonic responses and provided estimates of
the tunneling rate, including a particle bouncing off an
oscillating mirror, a topic that we return to in Sec. IV.E.
The fly in the ointment comes when we attempt to construct

HF in the many-body setting. In particular, we now consider
an array of coupled pendula by adding a nearest-neighbor
interaction to Eq. (6),

Hðq; p; tÞ ¼
X
i

�
p2
i

2
þ ω2

0

2
½1þ δ cosðωDtÞ�q2i þ

ϵ

4
q4i

�

− g
X
hi;ji

ðqi − qjÞ2: ð12Þ

Physically, one can think of this as treating the pendulum as a
macroscopic object composed of atoms [i.e., the Frenkel-
Kontorova model (Kontorova and Frenkel, 1938)]. It differs
from the Faraday problem in the details of the dispersion and
nonlinearity but is otherwise conceptually similar.
If the initial condition is uniform (qi; pi ¼ q; p), the

problem exactly reduces to Eq. (6), which we now know
exhibits stable period doubling. But stability for a finite

1In conventional symmetry breaking, only eigenstates with energy
densities below the symmetry-breaking temperature Tc have this
structure. However, if many-body localization is able to exist in
Floquet Hamiltonians (Ponte et al., 2015; Šuntajs et al., 2020; Sels
and Polkovnikov, 2021), it is believed that symmetry breaking must
manifest at all energy densities (De Roeck et al., 2016; Moudgalya,
Huse, and Khemani, 2020; Sahay et al., 2021).
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volume of initial conditions requires one to consider initial
conditions of the form qi ¼ q� þ δqi, in which the δqi are
small but independent. When the language we introduced near
Eq. (5) is used, there are now weights in the higher-kmodes qk
that are all-to-all coupled through the

P
iq

4
i nonlinearity, so

the center-of-mass mode (i.e., k ¼ 0) cannot be examined in
isolation. While one can attempt to employ the same time-
dependent canonical transformation KðtÞ site by site, for
generic initial conditions the coupling gðqi − qjÞ2 will not be
exactly time independent after this transformation; thus, since
the transformed Hamiltonian HðQi; Pi; tÞ remains time de-
pendent we cannot appeal to the conservation of HF to ensure
stability. One can attempt to remedy this by adjusting the
canonical transformation via a perturbative expansion in g,
but there is a general reason to expect this expansion will
fail to converge in the thermodynamic limit: the ubiquity
of ergodicity.

C. Ergodicity, destroyer of time crystals

As discussed, Hamiltonian systems are distinguished
from more general dynamical systems like coupled map
lattices by the existence of a phase-space volume element
dμ ¼ dq ∧ dp, which is invariant under the dynamics, i.e., the
dynamics are “measure preserving.” An invertible measure-
preserving system is said to be ergodic if the only finite-
volume subset A that is invariant under the discrete-time
update rule Φ [i.e., ΦðAÞ ¼ A] is the entire phase space.
An equivalent statement is that the orbit of any volume
∪m ΦðmÞðAÞ eventually fills all of phase space (Cornfeld,
Fomin, and Sinai, 2012). Full ergodicity is incompatible with
the existence of a time-independent HFðQ;PÞ because the
conservation of the quasienergy HF partitions phase space
into Φ-invariant quasienergy contours (though the dynamics
may be ergodic within each contour). A time-dependent
many-body system with a bounded state space is generically
expected to be ergodic in the thermodynamic limit.2

Or, in the unbounded case, the generic fate of a driven,
many-body Hamiltonian system is to heat up. In an ergo-
dic system, Birkhoff’s ergodic theorem (Birkhoff, 1931;
Cornfeld, Fomin, and Sinai, 2012) equates a temporal average
of the sort defined in Eq. (3) with averages over the entire
phase space. Thus, SτB necessarily requires ΦðmÞ to be non-
ergodic: a time crystal remembers its initial condition for an
infinitely long time because it is encoded in the phase of the
period-m oscillations. SτB is thereby deeply connected with
another profound phenomena: ergodicity breaking.
When the interactions are weak or the driving is strong, the

timescale required to explore all of phase space can be large,
so in practice SτB may persist out to very long times τ.

This behavior is sometimes referred to as slow Floquet
heating. While energy is not conserved, in systems described
by an effective Floquet Hamiltonian [Eq. (8)], the quasienergy
hHeffi will change slowly due to the residual drive VðtÞ,
eventually allowing the system to explore its full phase space.
We return to such anomalously long timescales when we
discuss prethermal time crystals in Sec. IV.D.
The existence of such a long timescale is certainly one

ingredient in Faraday’s observation of period doubling in a
system that is Hamiltonian. An additional role is played by
viscosity, which converts the high-k oscillations of the surface
into heat that is eventually dissipated into the environment.
When viscosity alone is added to the equations of motion, the
system is no longer measure preserving and becomes analo-
gous to the coupled map lattices where true SτB is possible.
However, this might seem contradictory because viscosity is,
after all, a phenomenological treatment of microscopic
degrees of freedom that are themselves Hamiltonian. The
key is that at any finite temperature (energy density), a
microscopic bath invariably generates noise in addition to
viscosity, as required by the fluctuation-dissipation theorem.
Understanding the fate of SτB in the presence of dissipation
and noise is a particularly rich direction; we return to the
possibility of such “open” time crystals in Sec. V.
To summarize, in dissipative dynamical systems like the

coupledmap lattices or the limit cycle of a van der Pol oscillator,
stable, many-body SτB is possible, and time crystals in this
context have a long history. But their realization in measure-
preserving systems that describe the Universe at the micro-
scopic level is far more subtle. While stable SτB is possible in
few-body classical systems such as a parametric resonator (i.e.,
the shaken pendulum example in Sec. III.B.4), their existence in
many-body systems requires, at minimum, a generic mecha-
nism for breaking ergodicity. In closed classical systems, this is
not thought to be possible except when the system is fine-tuned.
This is where the magic of quantum mechanics comes in,
through the physics of many-body localization. Many-body
localization is widely believed to allow for stable ergodicity
breaking in the thermodynamic limit, and where there is
ergodicity breaking there will be time crystals.

IV. CLOSED, PERIODICALLY DRIVEN
QUANTUM SYSTEMS

A. Introduction to quantum Floquet phases

As noted, ergodicity breaking is necessary for the stability
of a time crystal. In fact, with the insights of Sec. III in
hand, one can utilize almost any generic, robust form of
ergodicity breaking to stabilize a time crystal. However, this
was not immediately apparent when many-body localization
(Nandkishore and Huse, 2015; Abanin et al., 2019) was
originally discovered. We note at the outset that there remains
uncertainty regarding the stability of many-body localization,
with certain studies arguing for a thermalization timescale that
diverges exponentially in the strength of the disorder W,
τ ∼ eW=Ω, where Ω is a constant (Šuntajs et al., 2020; Abanin
et al., 2021). If this is indeed the case, it would naturally place
many-body localized SτB in the category of prethermal
discrete time crystals (Sec. IV.D).

2The ideas emanating from Boltzmann’s “ergodic hypothesis”
postulate that time-independent many-body systems are generically
ergodic within each conserved energy shell (Von Plato, 1991). This
hypothesis relates to the Floquet setting by converting the time-
dependent Hamiltonian HðtÞ into a time-independent H¼HðtÞþπt,
where ðt; πtÞ is an additional canonical pair living on the cylinder
t ∼ tþ T. If H is ergodic on an energy shell, then the stroboscopic
dynamics of HðtÞ are fully ergodic.
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Many-body localization is a phenomenon that is believed to
occur in 1D systems with strong quenched disorder and short-
range interactions (Choi et al., 2016; Smith et al., 2016). It
represents a failure of the eigenstate thermalization hypothesis
(Deutsch, 1991; Srednicki, 1994) that occurs when disorder
prevents equilibration by localizing the degrees of freedom of
a system. Locally injected energy cannot spread throughout
the system (Nandkishore and Huse, 2015; Abanin and Papić,
2017; Abanin et al., 2019). Many-body localization was
originally formulated as a property of highly disordered
time-independent Hamiltonians Ĥ in which local observables
fail to relax to their thermal average with respect to e−βĤ and,
instead, the long-time behavior depends on the details of
the initial state, an example of ergodicity breaking. It was
subsequently realized that many-body localization may also
occur in 1D periodically driven systems with strong disorder
for appropriate driving parameters (Lazarides, Das, and
Moessner, 2015; Ponte et al., 2015; Abanin, Roeck, and
Huveneers, 2016; Sierant et al., 2023). In such Floquet-MBL
systems, energy absorbed during one part of the drive cycle
must be returned before its completion (D’Alessio and
Polkovnikov, 2013; Ponte et al., 2015; Bordia et al., 2017).
Consequently, the energy spreading and thermalization nec-
essary for drive-induced Floquet heating cannot occur
(Sec. III.C).
In the meantime, interest in Floquet systems had been

reenergized by seminal work demonstrating that periodic
driving can induce topological properties in an otherwise
nominally trivial system (Inoue and Tanaka, 2010; Jiang et al.,
2011; Lindner, Refael, and Galitski, 2011; Thakurathi et al.,
2013; Wang et al., 2013; Potter, Morimoto, and Vishwanath,
2016; Roy and Harper, 2016, 2017; von Keyserlingk and

Sondhi, 2016a, 2016b; Potirniche et al., 2017). In particular,
Jiang et al. (2011) and Thakurathi et al. (2013) considered
periodically driven versions of a Majorana chain in which the
time-dependent Hamiltonian toggles between topological
superconducting and trivial insulating states. These free
fermion models avoid Floquet heating by virtue of their
integrability, which does not survive generic perturbations
involving interactions. For such drives, the Floquet operator
takes on a particularly simple form UF ¼ exp½icPjiγ

A
j γ

B
j �×

exp½iJPjiγ
B
j γ

B
jþ1� (Prosen, 1998; Thakurathi et al., 2013).

For c near π=2, there are “Floquet Majorana fermions” at
quasienergy π. In other words, there are locally indistinguish-
able states of opposite fermion parity associated with edge
modes. In an undriven system, Majorana edge modes would
be degenerate (i.e., they would be zero modes), but the
periodic driving splits their Floquet eigenvalues by π.
This property of the spectrum does not imply a sub-

harmonic response of the system for generic initial con-
ditions (and moreover it is not stable to interactions).
However, a Jordan-Wigner transformation of the driven
Majorana chain yields a driven Ising model that exhibits
subharmonic oscillations of the Ising order parameter;
moreover, by adding strong disorder leading to many-body
localization, the system could be stabilized against inter-
actions (Khemani et al., 2016). Initially it was not believed
that the subharmonic response of the resulting “π spin glass”
could survive in the absence of the Ising symmetry, imply-
ing that, in analogy with the discussions of the XY magnet in
Sec. II.A, a time crystal stable against generic perturbations
did not exist (Khemani et al., 2016).
This sentiment was overturned by Else, Bauer, and Nayak

(2016), who showed that discrete time crystals are a stable
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FIG. 4. (a) Signatures of time-crystalline order were observed in a one-dimensional chain of ytterbium ions. In this system, the effective
spin degree of freedom is encoded in two hyperfine “clock” states of a 171Ybþ ion. (b) By varying the interaction strength (x axis), which
is effectively parametrized by an interaction timescale, and the strength of the perturbation on the π pulse (y axis), Zhang et al. (2017)
were able to observe the system’s behavior change from a discrete time crystal phase to a time-translation symmetry-unbroken phase.
Adapted from Zhang et al., 2017. (c) Choi et al. (2017) utilized a diamond sample containing a high density of nitrogen-vacancy color
centers (∼15 ppm) (Choi et al., 2020). In this system, the spin consists of two ms sublevels, and N-V centers interact with one another
via magnetic dipole-dipole interactions. The interplay between the long-range dipolar interaction and the three-dimensional nature of the
sample is conjectured to lead to critically slow thermalization (Ho et al., 2017; Kucsko et al., 2018), during which discrete time-
crystalline order can be observed. (d) Experimentally measured phase boundary (red dashed line through diamond data points added as a
guide) of the critical discrete time crystal as a function of the effective interaction strength and the π-pulse imperfection. Adapted from
Choi et al., 2017.
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phase of matter in Floquet-MBL systems with only time-
translation symmetry. In particular, a discrete time crystal in a
closed system must satisfy Eq. (3) in the absence of a bath and
in a manner that is stable against arbitrary weak perturbations
respecting time-translation symmetry. Other symmetries may
or may not be present, but Eq. (3) should hold even when
those symmetries are violated. These developments led
rapidly to the first phase diagram for a time crystal and to
proposals describing how to create and measure discrete
time crystals in experiments (Yao et al., 2017), culminating
in the first observations of time-crystalline behavior (Fig. 4)
(Choi et al., 2017; Zhang et al., 2017).
Thus far we have focused on many-body localization as

a possible strategy for stabilizing discrete time crystals. One
of the caveats of using many-body localization is that the
approach depends on the robustness of many-body localiza-
tion itself. While many-body localization has purportedly
been proven to exist in certain undriven, one-dimensional spin
chain models with random local interactions (Imbrie, 2016),
its stability in d > 1 and in long-range interacting systems
remains an open question (Yao et al., 2014; De Roeck
and Huveneers, 2017; Luitz, Huveneers, and Roeck, 2017;
Thiery et al., 2018; Khemani, Moessner, and Sondhi, 2021;
Yao et al., 2021); to date, there has been no mathematical
proof for the stability of many-body localized SτB in a Floquet
system in any dimension. An alternate strategy for stabilizing
discrete time crystalline (DTC) order called Floquet pretherm-
alization can occur in any dimension and in the presence of
long-range interactions, so long as the driving frequency ωD is
sufficiently high. To that end, in the remainder of this section
on closed systems (Fig. 1), we focus in Secs. IV.B and IV.C on
MBL discrete time crystals in 1D and in Sec. IV.D on
prethermal discrete time crystals in arbitrary dimension and
with power-law interactions.

B. Many-body localized discrete time crystal

Our focus in this section is on highlighting the key features
of time-crystalline order in Floquet-MBL systems, by describ-
ing recent observations from three distinct experimental
platforms: trapped atomic ions (Yao et al., 2017; Zhang et al.,
2017), spins in solid-state materials (Abobeih et al., 2019;
Randall et al., 2021), and superconducting qubits (Arute et al.,
2019; Mi et al., 2021; Frey and Rachel, 2022).
Before describing the experiments, we begin by introducing

a standard model for a period-doubled discrete time crystal in
a spin-1=2 chain and discuss several limits of this model.
While the experiments do not implement this specific Floquet
unitary, the spirit of their Floquet dynamics are captured by
the example. In particular, consider Floquet time evolution
(with a period T0 ¼ t1 þ t2) governed by alternating between
two time-independent Hamiltonians:

HðtÞ ¼
�
H1; for time t1;

H2; for time t2:
ð13Þ

We take H1 and H2 to be given by

H1 ¼ −
X
hi;ji

Jijσ
z
iσ

z
j −

X
i

ðhziσzi þ hyi σ
y
i þ hxi σ

x
i Þ;

H2 ¼ g
X
i

σxi ; ð14Þ

with σ⃗ being Pauli spin operators and Jij; hxi ; h
y
i ; h

z
i suffi-

ciently disordered to ensure that the spin chain is many-body
localized. The simplest way to see the trivial emergence of a
period-doubled (i.e., ν ¼ 1=2 subharmonic) response is to
consider the decoupled limit (Jij ¼ 0) with only a longitudinal
field hz along ẑ. For any individual spin initially aligned along
the ẑ axis, the spin will Larmor precess around the x̂ field
during the second portion H2 of the Floquet evolution. When
timed appropriately (t2 ¼ π=2g), this evolution implements a
so-called π pulse, which flips the spin and causes a period-
doubled response. However, much like our discussion of the
map ΦðxÞ ¼ −x in Sec. II, this period doubling is not rigid to
perturbations and not indicative of a many-body phase. In
particular, any imperfections in the timing of the π pulse will
immediately lead to the breakdown of the period-doubled
response (Yao et al., 2017). However, by turning on the Ising
interactions between the spins, in conjunction with the
disorder which leads to many-body localization, the system
becomes robust to small imperfections, and the subharmonic
response is rigid to arbitrary, weak perturbations of both the
initial state and the Hamiltonian (so long as these perturba-
tions respect the period of the Floquet evolution). We note that
this last parenthetical condition distinguishes time-crystalline
order in closed systems from time-crystalline order in open
systems, where perturbations that explicitly break the discrete
time-translation symmetry of the dynamics can still be
allowed; see Sec. V.E.

C. Experimental signatures of disordered time crystals

1. Trapped ion spin chains

Zhang et al. (2017) observed and characterized time-
crystalline behavior in a spin chain [Fig. 4(a)] composed of
trapped atomic ions. In the experiment, each ion acts as an
effective spin, and interactions are controlled through external,
optical spin-dependent forces (Monroe et al., 2021). The
system is periodically driven by successively applying three
time-independent Hamiltonians corresponding to a global
drive, interactions, and disorder (Smith et al., 2016). The
disorder is programmed by individually addressing each spin
with a tunable laser beam. The ion chain was composed of a
relatively small number of effective spins (where L ¼ 10–14)
and the time-crystalline response exhibited some sensitivity to
the initial conditions (Zhang et al., 2017; Khemani, Moessner,
and Sondhi, 2019), suggesting that long-range interactions
could be leading to a time-crystalline response stabilized by
prethermalization (Sec. IV.D) rather than localization. The
experiment was able to observe a crossover between the DTC
regime and the symmetry-unbroken phase [Fig. 4(b)]. To do
so, Zhang et al. (2017) measured the Fourier spectrum of each
individual spin and studied the variance of the amplitude of
the ν ¼ 1=2 subharmonic response as a function of the π-pulse
imperfection ε. By increasing the strength of the interactions
between the ion spins, they demonstrated that the location of
the variance peak shifted toward larger values of ε, which is
consistent with the expectation that many-body interactions
are essential for stabilizing time-crystalline order.

2. Spins in condensed matter

Signatures of time-crystalline order in solid-state systems
have been observed in both disordered nitrogen-vacancy
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(N-V) ensembles (Choi et al., 2017; Ho et al., 2017) and NMR
systems (Pal et al., 2018; Rovny, Blum, and Barrett, 2018a,
2018b; Luitz et al., 2020). In the context of N-V centers
[Figs. 4(c) and 4(d)], despite the presence of strong disorder it
is known that dipolar interactions in three dimensions cannot
lead to localization; however, the resulting time-crystalline
order can exhibit an anomalously long lifetime owing to
critically slow thermalization (Ho et al., 2017). One of the
puzzles arising from NMR experiments on phosphorus
nuclear spins in ammonium dihydrogen phosphate was the
observation of period doubling despite the lack of disorder
and a high temperature initial state. These observations were
ultimately understood as consequences of an approximate
long-lived Uð1Þ conservation law (Luitz et al., 2020; Stasiuk
and Cappellaro, 2023), which leads to effective prethermal
time-crystalline order; see Sec. IV.D.
Recent work in the solid state has focused on pushing

toward a realization of time-crystalline order in a regime
compatible with many-body localization (Randall et al.,
2021). As depicted in Fig. 5(a), Randall et al. (2021) utilized
a platform consisting of a precisely characterized array of 27
nuclear spins surrounding a single N-V center in diamond
(Abobeih et al., 2019). Owing to differences in the hyperfine
interaction strengths, each nuclear spin is individually
addressable (for both initialization and readout [Fig. 5(b)]).
To work with an effective one-dimensional geometry (thus
avoiding issues regarding the stability of many-body

localization in d > 1), Randall et al. (2021) selected a specific
nine-spin subset of the 27 nuclear spins. By preparing a
variety of product initial states, Randall et al. (2021) dem-
onstrated that dipolar interactions between the nuclear spins
lead to robust period doubling for ∼103 Floquet cycles (note
that each Floquet cycle lasts approximately 10 ms), regardless
of the initial state [Fig. 5(c)]. Moreover, they showed that local
thermalization occurs within ∼10 Floquet cycles, demonstrat-
ing that the observed time-crystalline order is not a result of
slow thermalization.

3. Superconducting transmon qubits

Signatures of time-crystalline order have also recently
been observed in three experiments utilizing superconducting
transmon qubits (Mi et al., 2021; Xu et al., 2021; Frey and
Rachel, 2022). Working with Google’s “Sycamore” processor,
Mi et al. (2021) employed a quantum-circuit-based approach
to demonstrating MBL time-crystalline order (Ippoliti et al.,
2020). In particular, to work with a one-dimensional system,
Mi et al. (2021) isolated a nearest-neighbor coupled chain of
L ¼ 20 qubits from the two-dimensional array [Fig. 5(d)]; an
analogous strategy was taken by Frey and Rachel (2022), who
isolated an L ¼ 57 qubit chain on IBM’s quantum processors:
ibmq_manhattan and ibmq_brooklyn. Both Mi et al. (2021)
and Frey and Rachel (2022) utilized one- and two-qubit gates
in order to implement a digital Floquet sequence. For the

(a)

(d) (e) (f)

(b) (c)

FIG. 5. (a) Schematic image depicting the nine-spin subset of the 27 precharacterized nuclear spins surrounding the single N-V center.
(b) Each nuclear spin can be individually initialized and read out via coupling to the N-V center. The Floquet sequence consists of Uint,
which includes a disordered long-range Ising interaction and a disordered longitudinal field followed by an approximate π pulse RxðθÞ.
The disorder is naturally inherited from the random positioning of the nuclear spins within the diamond lattice. (c) In the MBL discrete
time-crystal phase, the system exhibits robust subharmonic oscillations lasting ∼103 Floquet cycles. The various colors are associated
with different initial states, which are characterized by their quasienergy in the right panel. The time-crystalline behavior is independent
of the initial state, as expected for a MBL time crystal. (d) Schematic depicting the 53 transmon qubit Sycamore chip. Mi et al. (2021)
isolated one-dimensional chains of L ¼ 8, 12, 16, and 20 qubits from this two-dimensional grid. (e) Digital Floquet sequence consisting
of random longitudinal fields, disordered nearest-neighbor Ising interactions, and approximate π pulses are applied to random “bit-
string” initial states. (f) In the thermal phase (left panel), the disorder-averaged autocorrelation function quickly decays to zero. In the
MBL time-crystal phase, the same correlation function exhibits subharmonic oscillations lasting ∼102 Floquet cycles. Mi et al. (2021)
also implemented a benchmarking “echo” sequence Uecho, which demonstrated that the time crystal’s lifetime is consistent with being
limited by experimental imperfections and decoherence. (a)–(c) Adapted from Randall et al., 2021. (d)–(f) Adapted from Arute et al.,
2019, and Mi et al., 2021.
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experiment performed on the Sycamore processor, the specific
Floquet sequence was given by [Fig. 5(e)]

UF ¼ e−ði=2Þ
P

ihiσ
z
i e−ði=4Þ

P
iJiσ

z
i σ

z
iþ1e−ði=2Þπg

P
iσ

x
i ; ð15Þ

which consists of random longitudinal fields, disordered
nearest-neighbor Ising interactions, and approximate π
pulses. Deviations from the ideal π-pulse limit [i.e., g ¼ 1
in Eq. (15)] are used to control the transition between the
discrete time crystal phase [i.e., g ¼ 0.97 in Fig. 5(f)] and the
trivial thermal phase [i.e., g ¼ 0.6 in Fig. 5(f)]. To demon-
strate that the observed subharmonic response is not affected
by the choice of initial states, both Mi et al. (2021) and Frey
and Rachel (2022) probed the Floquet dynamics starting with
random initial bit strings. In addition, Mi et al. (2021) also
experimentally implemented a finite-size-scaling analysis by
varying the length of their one-dimensional chain between
contiguous subsets of 8, 12, and 16 transmon qubits; this
reveals a transition between the MBL discrete time crystal
and the thermal phase at a critical value of the π-pulse
imperfections, 0.83 ≳ gc ≲ 0.88. Finally, to characterize the
intrinsic gate errors and decoherence of their system [with
T1; T2 ∼ 100 μs (Arute et al., 2019; Kjaergaard et al., 2020)],
Mi et al. (2021) implemented a benchmarking Floquet
sequence that reversed the digital time evolution after a
set number of Floquet cycles. Dividing by this benchmarking
sequence leads to signatures of time-crystalline order that
exhibit minimal effective decay.

D. Prethermal discrete time crystal

1. Floquet prethermalization

While many-body localization provides a quantum
approach to realizing a time crystal with an infinite lifetime
in the thermodynamic limit (τ ∼ eL → ∞), in this section we
focus on an alternate, disorder-free strategy called Floquet
prethermalization (Fig. 1). Here the lifetime of the time-
crystalline order does not scale with system size but can be
exponentially long in a particular control parameter, namely,
the ratio of the driving frequency to local energy scales J
within the system: τ ∼ eωD=J.
In static systems, the concept of prethermalization is a

powerful framework for understanding the thermalization of
systems with disparate energy scales: the dynamics (and thus
thermalization) of “fast moving” degrees of freedom are
governed by an effective Hamiltonian where the slow degrees
of freedom remain basically frozen (Kagan and Klinger, 1974;
Berges, Borsányi, and Wetterich, 2004; Gring et al., 2012). In
driven Floquet systems, the presence of two distinct energy
scales is particularly natural since the frequency of the drive
and the interaction energy scales within the Hamiltonian
are independent. Indeed, it was recently established that
Floquet prethermalization is a generic feature of driven
systems in the high-frequency regime (Abanin, Roeck, and
Huveneers, 2015; Kuwahara, Mori, and Saito, 2016; Mori,
Kuwahara, and Saito, 2016; Abanin et al., 2017a, 2017b; Else,
Bauer, and Nayak, 2017; Weidinger and Knap, 2017). From
the perspective of heating, as discussed in Sec. IV.A, one
of the central consequences of Floquet prethermalization is

that the frequency of the drive exponentially controls the
heating timescale t� (Abanin, Roeck, and Huveneers, 2015;
Mori, Kuwahara, and Saito, 2016; Machado et al., 2019). The
physical intuition for this exponential scaling is as follows: at
large frequencies ωD ≫ J (where J is the local energy scale of
the many-body system), the system must undergo ∼ωD=J
local rearrangements in order to absorb a single unit of energy
from the drive. This intuition holds for both quantum and
classical systems, although in the remainder of Sec. IV.D.1 we
focus on the quantum setting; we return to the classical case in
the outlook (Sec. VI.B.1).
Kuwahara, Mori, and Saito (2016) and Abanin et al.

(2017a) proved that up until the timescale t� ∼ eωD=J, the
system does not absorb energy from the drive and the
stroboscopic Floquet dynamics are (up to exponentially small
corrections) captured by an effective static Hamiltonian Heff .
Unlike in many-body localization, these features of Floquet
prethermalization are largely independent of disorder, dimen-
sion, and the range of interactions (Machado et al., 2019,
2020; Fan et al., 2020; Rubio-Abadal et al., 2020; Peng et al.,
2021; Pizzi, Knolle, and Nunnenkamp, 2021).
While the ability to exponentially delay the onset of Floquet

heating is crucial for realizing and stabilizing a discrete time
crystal, one additional key insight is still needed, namely, the
observation thatHeff can exhibit an emergent symmetry (which
need not be present in the original Floquet evolution) protected
by the discrete time-translation symmetry of the drive (Else,
Bauer, and Nayak, 2017; Machado et al., 2020). The presence
of such an emergent symmetry in Heff allows one to sharply
define phases of matter (i.e., via symmetry breaking) in the
prethermal regime (Fig. 6). A mathematical description of
prethermal discrete time crystals in the quantum setting closely
follows the discussion of Secs. III.B.1 and III.B.2.
This lays the foundation for the connection to time-

crystalline order. If a many-body system prethermalizes to

FIG. 6. Schematic depicting prethermal time-crystalline order
identified via the stroboscopic behavior of the magnetization as a
function of time. Left panel: in the non-time-crystal prethermal
phase, the magnetization during even and odd Floquet cycles
becomes identical after a short time (corresponding to local
thermalization). During the intermediate prethermal regime, this
magnetization may remain small, but nonzero, until it decays
to zero at the Floquet heating timescale. Right panel: in the
prethermal discrete time-crystal phase, the magnetization oscillates
throughout the prethermal regime, leading to stroboscopic curves
that exhibit plateau behavior. The prethermal time crystal ulti-
mately melts at exponentially late times, controlled by the
frequency of the driving field. Adapted from Else, Bauer, and
Nayak, 2017.
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a state that spontaneously breaks the emergent symmetry of
Heff , it will also exhibit time-crystalline order, corresponding
to a subharmonic oscillation between the different symmetry
sectors (Else, Bauer, and Nayak, 2017; Machado et al., 2020).
To recap, within the framework of Floquet prethermaliza-

tion, realizing a time crystal requires a few ingredients: First,
the Floquet drive must induce an emergent symmetry in the
prethermal effective Hamiltonian Heff . Second, Heff must
be able to host a symmetry-broken phase with respect to the
emergent symmetry. Note that owing to Landau-Peierls-type
arguments, this naturally places constraints on the interaction
range and dimensionality for realizing a prethermal discrete
time crystal (PDTC) (Machado et al., 2020; Kyprianidis et al.,
2021; Pizzi, Knolle, and Nunnenkamp, 2021). Finally, the
initial state of the many-body system must have a sufficiently
low energy density (measured with respect to Heff ) that it
equilibrates to the spontaneously symmetry-broken phase
during the prethermal regime (Fig. 6).

2. Prethermal discrete time crystal in a 1D trapped ion chain

To highlight the dynamical signatures of a prethermal
discrete time crystal, as well as the distinctions from a MBL
time crystal (Sec. IV.B), we turn to a recent experiment
performed on a trapped ion quantum simulator (Kyprianidis
et al., 2021). As discussed in Sec. IV.C.1, some of the
first experimental observations of time-crystalline behavior
[Fig. 4(a) and 4(b)] were originally observed in small-scale
trapped ion experiments (Zhang et al., 2017), and one of the
central advances in recent works is the ability to experimentally
distinguish between local thermalization (“short time” in Fig. 6)
and late-time dynamics in the prethermal regime.
The experiment consists of a one-dimensional chain of

N ¼ 25 ytterbium ions, and the Floquet evolution alternates
between two types of dynamics. First, a global π pulse is
applied and, second, the system evolves under a disorderless,
long-range, mixed-field Ising model. At leading order in the
Floquet-Magnus expansion, the stroboscopic dynamics of the
ions are captured by the effective Hamiltonian

Heff ¼
X
i;j

Jijσxi σ
x
j þ By

X
i

σyi ; ð16Þ

which exhibits an emergent Ising symmetry. To begin,
Kyprianidis et al. (2021) demonstrated that, regardless of
the initial state of the ion chain, the system exhibits slow,
frequency-dependent heating to infinite temperature. As
mentioned, for the system to exhibit time-crystalline order,
the initial state of the ion chain must reach a pseudoequili-
brium state (within the prethermal regime) in which it breaks
the emergent Ising symmetry (Fig. 7). For a one-dimensional
system at finite temperature, this is possible only for suffi-
ciently long-range interactions (Thouless, 1969; Fisher, Ma,
and Nickel, 1972; Kosterlitz, 1976). The trapped ion system
generates such long-range interactions using a pair of Raman
laser beams to couple the internal spin states to motional
modes of the ion chain (Sørensen and Mølmer, 1999).
Initializing the system with a Néel state [Fig. 7(a), top panel],

Kyprianidis et al. (2021) observed that the magnetization
MðtÞ ¼ ð1=NÞPN

i¼1hσxi ðtÞihσxi ð0Þi quickly decays to zero,

in agreement with the expectation that the system equilibrates
to a symmetry-unbroken paramagnetic state. On the other hand,
starting with a polarized initial state, MðtÞ exhibits period
doubling [Fig. 7(a), bottom panel], whose lifetime is directly
controlled by the frequency of the drive. Moreover, in the latter
case, the lifetime of the time-crystalline order matches with t�,

(a)

(b)

FIG. 7. Prethermal discrete time crystal in a disorder-free chain
of L ¼ 25 171Ybþ ions. (a) For initial states whose energy density
(measured with respect to Heff ) lies in the trivial phase of the
effective Hamiltonian (top panel), the dynamics of the magneti-
zation are largely independent of the drive frequency and quickly
equilibrate to zero. Despite the rapid decay of the magnetization,
the energy density exhibits slow Floquet heating. For initial states
whose energy density lies in the symmetry-broken phase of Heff
(bottom panel), the stroboscopic dynamics of the magnetization
exhibit subharmonic oscillations (solid curves correspond to even
periods, while dashed curves correspond to odd periods), whose
lifetime extends with increasing frequency. The lifetime of this
prethermal time-crystalline order is consistent with being cut
off by the slow Floquet heating timescale. (b) Experimentally
measured phase diagram of a prethermal discrete time crystal as a
function of the energy density of the initial state. States near the
edge of the spectrum (i.e., which order with respect to Heff )
exhibit PDTC order, while states in the trivial phase ofHeff do not
exhibit prethermal time-crystalline order. (a),(b) Adapted from
Kyprianidis et al., 2021.
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which is consistent with the intuition that Floquet heating
ultimately melts the PDTC at late times.
An intriguing open question is whether this melting can be

delayed or fully arrested by coupling the system to a cold bath
(Else, Bauer, and Nayak, 2017). More broadly, the stability
and rigidity of many-body time-crystalline order in dissipa-
tive, open quantum systems [Fig. 8(c)] remains an active area
of exploration (Gong, Hamazaki, and Ueda, 2018; Iemini
et al., 2018; Tucker et al., 2018; Buča and Jaksch, 2019; Buča,
Tindall, and Jaksch, 2019; Dogra et al., 2019; Gambetta,
Carollo, Marcuzzi et al., 2019; Keßler et al., 2019; Lledó,
Mavrogordatos, and Szymańska, 2019; Zhu et al., 2019;
Booker, Buča, and Jaksch, 2020; Chinzei and Ikeda, 2020;
Keßler et al., 2020; Lazarides et al., 2020; Lledó and
Szymańska, 2020; Seibold, Rota, and Savona, 2020; Keßler
et al., 2021; Kongkhambut et al., 2022). We return to this
topic in Sec. V.

E. Periodically driven Bose-Einstein condensates

Long-lived subharmonic responses have been explored
extensively in driven Bose-Einstein condensates without
disorder (Holthaus and Flatté, 1994; Holthaus, 1995;
Sacha, 2015, 2020; Autti, Eltsov, and Volovik, 2018; Liao
et al., 2019; Giergiel et al., 2020; Smits, Stoof, and van der
Straten, 2020, 2021; Autti et al., 2021; Hodson and Jarzynski,
2021; Hannaford and Krzysztof, 2022; Kongkhambut et al.,
2022; Autti et al., 2023). A paradigmatic example is provided
by a BEC bouncing off an oscillating mirror (Flatté and
Holthaus, 1996; Sacha, 2015). To understand this scenario,
consider a particle under the influence of gravity that bounces

off an oscillating mirror [Fig. 8(a)]. In the reference frame
of the mirror (in which the mirror is held constant at z ¼ 0),
the particle’s gravitational potential energy is given by
UðzÞ ¼ m½gþ a cosðωDtÞ�z, with the position of the particle
at z > 0. Classically, a single particle in this potential exhibits
a 2∶1 subharmonic response that is conceptually equivalent to
that of the driven nonlinear pendulum discussed in Sec. III.B
(Flatté and Holthaus, 1996). In the quantum case, this leads to
two “nonspreading wave packets” localized to the double
minima of the effective Floquet Hamiltonian, corresponding
to the two period-doubled orbits (Bialynicki-Birula, Kaliński,
and Eberly, 1994; Buchleitner and Delande, 1995; Flatté and
Holthaus, 1996; Buchleitner, Delande, and Zakrzewski,
2002). However, in contrast to the classical case, quantum
tunneling between the two minima results in a finite lifetime τ
for the subharmonic oscillations. From the spectral perspec-
tive (Sec. III.B.3), this manifests as two Floquet eigenstates
jψ1i and jψ2i, whose relative Floquet eigenvalues are per-
turbed away from π → π þ 1=τ. Intuitively, these two Floquet
eigenstates correspond to the “bonding” and “antibonding”
configurations of the effective double-well potential. When
τ → ∞, the configurations jψ�i ¼ ð1= ffiffiffi

2
p Þðjψ1i � jψ2iÞ are

exchanged under each period, and a system prepared with a
majority amplitude in one or the other will thus exhibit SτB.
But with tunneling, these configurations slowly precess into
each other over the tunneling time τ, restoring the symmetry
(Holthaus and Flatté, 1994; Holthaus, 1995; Flatté and
Holthaus, 1996; Buchleitner, Delande, and Zakrzewski,
2002; Sacha, 2015).
However, τ can be radically extended by replacing a single

particle with an N-particle Bose-Einstein condensate with an
attractive contact interaction Hint ¼ −ðg0=4ÞjΨðzÞj4 (Sacha,
2015). In appropriate units, the Hamiltonian for the field
operator Ψ̂ is given by

Ĥ ¼
Z

∞

0

dz

�
Ψ̂†ðzÞ

�
−
1

2
∂
2
z þ

�
1þ a

g
cosðωDtÞ

�
jzj
�
Ψ̂ðzÞ

−
g0
4
jΨ̂ðzÞj4

�
: ð17Þ

Two approximations can be used to analyze the resulting
dynamics (Sacha, 2015): (i) Taking N → ∞ while holding
g0N fixed, the dynamics reduce to a periodically driven Gross-
Pitaevskii equation (GPE). The GPE is a classical Hamiltonian
field theory over a complex field ψðt; zÞ and can therefore be
efficiently simulated. (ii) One can project the interacting
dynamics onto the two nearly degenerate ground states
(i.e., the aforementioned double minima) of the single particle
Floquet Hamiltonian, effectively reducing the problem to two
bosonic modes.
These approximations can be combined into three cases.

When both approximations are made (i.e., taking N → ∞ and
also projecting to the two-mode picture), the dynamics exhibit
a bifurcation transition that produces period doubling (Sacha,
2015). Intuitively, owing to the attractive interaction, the
Floquet energy is minimized when all particles inhabit the
same well; tunneling between the wells is thereby suppressed
because all N → ∞ bosons must tunnel sequentially.

(a) (b)

(c)

FIG. 8. (a) Schematic depicting N atoms bouncing off an
oscillating mirror (Sacha, 2015). (b) Numerical simulations of
the scenario in (a) shows that the time evolution of the atomic
density exhibits SτB. At each time shown, the positions of 102

atoms (out of 104) are measured and a histogram of those positions
is depicted. (c) A Bose-Einstein condensate in a transversely
pumped high-finesse optical cavity can realize signatures of SτB in
an open system. In particular, the atom-cavity system can exhibit a
period-doubled oscillation between distinct density wave patterns
(Keßler et al., 2021). (a)–(c) Adapted from Sacha, 2015, Sacha and
Zakrzewski, 2018, and Keßler et al., 2021.
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If one considers only the second approximation (i.e., finite
N within the two-mode picture), quantum fluctuations in the
mode occupation remain, and it was shown that the tunneling
time increases exponentially with N, leading to a scaling τ ∝
eαN (Sacha, 2015; Wang et al., 2021). Thus, SτB is achieved
not in the limit of large system size, but rather in the limit of
large particle number. However, the two-mode approximation
automatically prevents Floquet heating (which is generally
presumed to occur in a driven many-body system) from
occurring (D’Alessio and Rigol, 2014; Khemani, Moessner,
and Sondhi, 2019; Else et al., 2020).
Finally, if one considers only the first approximation (i.e.,

N → ∞ but without taking the two-mode limit), SτB effec-
tively requires that the periodically driven Gross-Pitaevskii
equation is nonergodic; see Sec. III.C. This is in contrast to the
expectation that classical nonlinear field theories are generi-
cally ergodic (the integrability of the isotropic, undriven GPE
being a fine-tuned exception). However, this expectation may
not apply to the present situation. Owing to the gravitational
confining potential, the dynamics are effectively confined to a
zero-dimensional region near the minima of the double well.
This is in contrast to the Gross-Pitaevskii equation in an
isotropic potential or an array of coupled pendula, which each
have an extensive density of states.
Thus, while the number of degrees of freedom is formally

infinite, it may be that the KAM theorem still applies because
there are effectively only a few degrees of freedom that are
resonant with the periodic drive. With this in mind, KAM
might protect SτB in this scenario, as it does for a single
particle in a double-well Floquet potential (Sec. III.B.4). In the
absence of periodic driving, this is indeed the case; specifi-
cally, it has been proven that the undriven GPE in a double-
well potential breaks ergodicity. Below a critical energy, a
condensate becomes “self-trapped” in one of the minima
(Jackson and Weinstein, 2004; Albiez et al., 2005). It is
perhaps then plausible that the driven GPE can exhibit the
same phenomena, but in the rotating frame of the 2∶1
resonance [Fig. 8(b)]. Numerical simulations of the driven
GPE support this interpretation (Sacha, 2015; Kuroś
et al., 2020).
Finally, there is the question of what occurs when one

makes neither of the two aforementioned approximations.
Exact answers are difficult to obtain in this regime, as it is a
full quantum many-body problem, but numerical results have
been obtained within time-dependent Bogoliubov theory
(Kuroś et al., 2020) and the truncated Wigner approximation
(Wang, Hannaford, and Dalton, 2021). Both conclude that
out to thousands of driving periods, the boson population
remains almost entirely within the two modes, with no
evidence for heating.
These findings support the conclusion of the two-mode

approximation (with finiteN), where τ ∝ eαN . Such numerical
simulations cannot definitively rule out exponentially slow
depopulation and heating (Sec. IV.D), as might occur in a
prethermal time crystal (Else, Bauer, and Nayak, 2017;
Machado et al., 2019; Sacha, 2020). However, if one accepts
the conclusion that as N → ∞, the GPE can generically break
ergodicity in this setting (as it does in a static double-well
potential), the possibility that Floquet heating is absent out to

infinite times even for the driven GPE, seems like a possibility
(albeit still quite surprising).
Finally, we comment on the contention that time crystals

in driven BECs are “effectively few body” (Khemani,
Moessner, and Sondhi, 2019). This is partly a matter of
nomenclature. On the one hand, these systems are clearly not
few body as the interaction g0 and the limit N → ∞ are
necessary for SτB. Furthermore, while not rigorously proven
(much like Floquet many-body localization has also not been
rigorously proven), we find it plausible that SτB could be
stable up to times τ ∝ eαN , even when the physics is treated
as a full many-body problem. Again, much like the situation
with many-body localization, this “plausibility” is bolstered
by the fact that the undriven GPE in a double-well potential
does in fact break ergodicity.
On the other hand, it seems that SτB is stable only because

of the reduced dimensionality induced by the gravitational
confinement, which effectively ensures the accuracy of the
two-mode approximation; no such picture would be obtain-
able for the MBL setting (Sec. IV.B). We venture that a more
useful distinction is the nature of the thermodynamic limit
being taken. In the case of MBL time crystals (or the driven,
open time crystals of Sec. V), true SτB is achieved in the
thermodynamic limit L → ∞, with τ ∼ eL=ξ, keeping intensive
quantities fixed. In the case of the driven BEC, due to the
confining gravitational potential, the system size L is not
relevant (in this sense the problem is zero dimensional) and
the problem reduces to being effectively few mode, even
though the physics is realized in a full, many-body system. In
this setting, SτB is recovered in the limit N → ∞, keeping
g0N fixed, with τ ∼ eαN .
An interesting probe of this distinction would be to consider

a 2D generalization of the driven BEC: bosons are gravita-
tionally confined in the z direction but propagate freely
along x. In this case, the density of states is extensive in x,
and domain walls between the two period-doubled orbits can
form. It is natural to suppose that SτB is prethermal in this
case, as could be evaluated in the N → ∞ limit using the
2D GPE.

V. OPEN, PERIODICALLY DRIVEN SYSTEMS AND
STOCHASTIC DYNAMICS

Our discussion thus far has focused on closed systems in
which the dynamics are deterministic, x → ΦðxÞ. However,
when a system is coupled to an environment, it is often fruitful
to model the effect of the environment’s chaotic motion as
noise (most conveniently taken to be Markovian) so that the
dynamics become effectively stochastic. Rather than focusing
on a particular microstate, one instead considers a probability
distribution over microstates ρðx; tÞ that evolves under a
“master equation,” for example, the Fokker-Planck equation.
Integrating the master equation over one Floquet cycle
then produces a discrete update of the distribution
ρðx; tþ TÞ ¼ Φ½ρðx; tÞ�. In classical mechanics this results
in a probability distribution over canonical coordinates
ρðx ¼ fp; qg; tÞ that evolves under a Markov process
ρðx0; tþ TÞ ¼ R

Φðx0jxÞρðx; tÞdx, where Φðx0jxÞ are the
Markov transition probabilities. In the quantum case, we
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have a density matrix ρ̂ðtÞ that evolves under a “quantum
channel” ρ̂ → Φ½ρ̂�. One can also in principle consider non-
Markovian baths, a point to which we later return.
The definition of SτB given in Eq. (3) generalizes to the

open case by measuring the local observableO in expectation,
and stability can be defined by requiring SτB to be robust to
perturbations of the stochastic dynamics subject to locality
and any other dynamical constraints that one is interested in
[Fig. 8(c)]. The environment is both good and bad for SτB. On
the one hand, coupling to an environment introduces friction:
the energy and entropy produced by the periodic drive can
now be absorbed by the bath, which can prevent the long-time
Floquet heating that would otherwise destroy SτB in the
absence of many-body localization. This tends to help
stabilize spontaneous time-translation symmetry breaking.
On the other hand, if the environment is at finite temperature,
the inevitable noise that results may occasionally conspire to
cause phase slips in the period-doubled motion. Roughly
speaking, if noise nucleates phase slips at a rate of 1=τ, the
SτB has a finite autocorrelation time τ and there is no true
long-range order. The interplay of a periodic drive, inter-
actions, dissipation, and noise results in a truly nonequili-
brium situation that is exceptionally rich, just like the world
around us (Gong, Hamazaki, and Ueda, 2018; Iemini et al.,
2018; Tucker et al., 2018; Buča and Jaksch, 2019; Buča,
Tindall, and Jaksch, 2019; Dogra et al., 2019; Gambetta,
Carollo, Marcuzzi et al., 2019; Lledó, Mavrogordatos, and
Szymańska, 2019; Zhu et al., 2019; Booker, Buča, and Jaksch,
2020; Chinzei and Ikeda, 2020; Keßler et al., 2019, 2020,
2021; Lazarides et al., 2020; Lledó and Szymańska, 2020;
Seibold, Rota, and Savona, 2020; Kongkhambut et al., 2022;
Reichhardt et al., 2022; Nie and Zheng, 2023).

A. Activated time crystals

A classical realization of this interplay is given by Langevin
dynamics. Owing to the coupling with the environment,
each degree of freedom ðq; pÞ experiences an additional
Langevin force FLðtÞ ¼ −η _qþ fðtÞ. Here η is the friction
coefficient and fðtÞ is a white-noise stochastic force with
autocorrelation function hfðtÞfðt0Þi ¼ 2ηTδðt − t0Þ, where T
is the temperature of the bath. The total force is obtained by
adding FL to the time-dependent Hamilton’s equations:
_p ¼ −∂qHðtÞ þ FLðtÞ. This leads to a master equation (the
Fokker-Planck equation) of the general form ∂tρðfp; qg; tÞ ¼
L½ρ�, where L is the Fokker-Planck operator. Integrating the
Fokker-Planck equation over one Floquet cycle of the drive
then gives the discrete-time update ρðtþ TÞ ¼ Φ½ρðtÞ�.
Note that we are assuming the environment remains

in equilibrium at temperature T, and thus instantaneously
satisfies the fluctuation-dissipation theorem that relates the
magnitude of the friction η and the noise 2ηT. If HðtÞ were
time independent, this would ensure (via detailed balance) that
the system relaxes to the canonical ensemble at long times
where SτB is forbidden (Bruno, 2013; Nozières, 2013;
Watanabe and Oshikawa, 2015). But when HðtÞ is periodi-
cally driven, this need not be the case: a nonequilibrium steady
state can develop in which energy and entropy flow from the
drive to the bath via the system.

We can now return to the question of period doubling in
open classical many-body systems such as the Faraday-wave
instability and coupled pendula; see the earlier discussions
surrounding Eq. (12) and Sec. III.A. For small oscillations and
weak damping, the friction results in a damped Mathieu
equation of the general form q̈k ¼ −½ω2

k þ δk cosðωDtÞ�qk−
γk _qk. The subharmonic responses of this model have been
extensively studied (Pedersen, 1935, 1980; Hayashi, 1953;
Taylor and Narendra, 1969). As shown in Fig. 9, for γk > 0
the subharmonic response acquires a finite threshold value
for the drive amplitude δk, and modes outside the resonance
tongues are damped. Inside the resonance tongue, friction
causes small perturbations to the exact subharmonic orbit to
decay, providing an example of a stable limit cycle (Strogatz,
2018). As discussed, such stability is forbidden in non-
dissipative systems due to the conservation of phase-space
volume. Absent noise, SτB is then realized as a sharp many-
body bifurcation transition as some combination of driving
frequency, amplitude, and damping strength is tuned into the
2∶1 parametric resonance of a k mode. For strongly viscous
Faraday waves, the equations of motion are somewhat more
complex, but the conclusions are similar (Edwards and Fauve,
1994; Kumar and Tuckerman, 1994).
However, noise (i.e., finite temperatures T > 0) induces

fluctuations between the different cycles of the SτB, leading to
a finite autocorrelation time. Recall from our discussion of
prethermal systems (Secs. III.B.1 and IV.D) that we may
transform to a rotating frameKðtÞ:Hðq; p; tÞ → HðP;Q; tÞ ¼
HeffðQ;PÞ þ VðtÞ, in which the driving VðtÞ is weak. For a
single pendulum [Eq. (6)], Heff takes the form of a double-
well potential. The noise will then lead to activated hopping
between the minima at rate 1=τ ¼ e−Δ=kBT , where Δ is
the quasienergy barrier between the two minima. Thus, at
finite temperature a single pendulum is no longer a true time
crystal, but rather an activated time crystal in which the
autocorrelation time of the SτB diverges exponentially with
temperature.

FIG. 9. Arnold tongues of the damped Matthieu equation. The x
axis is the drive frequency expressed via the dimensionless ratio
a ¼ ð2ω0Þ2=ω2

D, while the y axis is the drive amplitude δ.
Contours indicate the critical drive amplitude required for
resonance when the coefficient of friction takes a given
value c. When c > 0, the period-doubled solution onsets only
at finite δ. Adapted from Pedersen, 1980.
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The problem is richer when the pendula are coupled into an
array, where Heff approximately takes the form of an Ising
model (recall Sec. III.B.4 for the definition of P�),

Heff ≈
X
i

�ðPi − P�Þ2
2

þ a cosð2QiÞ
�
þ g̃
2

X
hi;ji

ðQi −QjÞ2;

ð18Þ

where the parameter a depends on fδ; ϵ;ωD=ω0g [from
Eq. (12)] and g̃ is the transformed coupling strength.
The low quasienergy configurations are then localized

domain walls between the different period-m orbits. These
domain walls are easily observed when numerically simulat-
ing a 1D coupled array of pendula [Eq. (18)] in the presence of
the Langevin noise, as shown in Fig. 10. Indeed, one observes
a gas of domain walls undergoing Brownian motion due to the
noise, occasionally nucleating or annihilating in pairs. Yao
et al. (2020) studied the motion of these domain walls in detail
and found that it leads to a decay in the SτB autocorrelation
function: hqiðt ¼ nTÞqiðt ¼ 0Þi ∼ ð−1Þne−t=τ. The decay rate
τ is proportional to the density of domain walls, which is in
turn related to the temperature of the bath through an
Arrhenius law τ ∼ eΔ=kBT, where Δ is now the quasienergy
activation barrier required to nucleate a domain wall.
Yao et al. (2020) found numerically that in one dimension

collective effects can cause the barrier Δ to drop discontin-
uously as the parameters (for instance, δ or ωD) are varied,
indicating a nonequilibrium phase transition at which SτB is
completely destroyed. Without careful examination of the
temperature dependence at low T, this transition might easily
be mistaken as evidence for the existence of a “true” SτB

phase ensconced within a nonequilibrium phase transition,
while in reality the low temperature behavior is always
activated.
Naively, the existence of a finite critical temperature Tc for

equilibrium Ising symmetry breaking in two or more dimen-
sions suggests that the SτB domain walls cannot proliferate
for T < Tc, which would thereby stabilize time-crystalline
order to infinite times. However, in the damped system this is
not correct. To see why, Yao et al. (2020) evaluated the effect
of the Langevin force in the rotating frame and found two
contributions. First, fQ;Pg experience a Langevin force at the
same temperature T, which locally equilibriates Heff , explain-
ing the previously discussed activated processes. Second, the
effective Hamiltonian acquires a new contribution from the
friction η, of the form

P
iηP�Qi. Its physical origin is that, in

the rotating frame, P encodes the amplitude of the oscillation
[cf. Eq. (7)] and, because the friction prefers to damp the
amplitude, this equates to a net force on Q. The net potential
V ≈ a cosð2QÞ þ ηP�Q then biases Q to “roll downhill,”
which following Eq. (7) would unlock the response from
ωD=2. The bias leads to a net force on the domain walls that
causes nucleated islands to grow (Yao et al., 2020), even
though both sides of the domain wall are related by the Z2

time-translation symmetry. This net force destroys the pos-
sibility of phase coexistence. Thus, even in two or more
dimensions, the time-crystalline response in this and similar
models still exhibits an activated autocorrelation time. A
closely related effect was studied in the context of probabi-
listic cellular automata (Bennett et al., 1990), which are
introduced in Sec. V.D.
As η → 0, the magnitude of the aforementioned force

goes to zero and the density of domain walls can then undergo
a transition analogous to the equilibrium Ising transition.
However, once η → 0, one needs to again worry about heating
from the residual time-dependent part of the drive (this is
precisely related to the prethermal situation discussed in
Sec. IV.D).
In summary, the existence of Heff provides a unifying

framework for three regimes of time-crystalline behavior: in
the closed cased (η ¼ T ¼ 0), one has the prethermal scenario
where heating destroys SτB after an exponentially long time
τ ∼ eωD=J; in the open case (η > 0, T > 0), the environment
nucleates domain walls that destroy the SτB on an exponen-
tially activated timescale τ ∼ eΔ=kBT , where Δ is a quasienergy
barrier; and finally for the purely dissipative case η > 0,
T ¼ 0, there is true SτB conceptually analogous to that of the
coupled map lattice (Sec. II.A).

B. Experimental realizations of activated time crystals: Pendula,
ac-driven charge density waves, and fractional Shapiro steps

Several experiments on open many-body systems have
observed subharmonic responses that may be interpreted
within the framework of activated SτB. One example is a
shaken pendulum treated as a macroscopic object of ∼1023
particles. The coupled oscillator array of Eq. (12) can be
understood as a macroscopic pendulum composed of atoms qi
when one accounts only for its 1D width. The effect of noise
on such systems is of practical interest; for example, para-
metric resonance of a mesoscopic mechanical oscillator such

T
im

e
j

FIG. 10. Domain walls between different period-doubled sol-
utions of the parametrically driven 1D Frenkel-Kontorova model
[Eq. (12)] in contact with a finite-temperature Langevin bath.
Colors indicate the amplitude of the jth oscillator observed at
even stroboscopic times qjðt ¼ 2nTÞ, with time running verti-
cally. Inset: oscillations at stroboscopic times qjðnTÞ, which
reveal the period doubling. Adapted from Yao et al., 2020.
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as an AFM tip (Rugar and Grütter, 1991) is a standard tool
for mass and force sensing. In perfect isolation, driving will
generate stresses on the oscillator, causing the phonon modes
(qk≠0) to absorb a portion of the driving power, heating up the
system and at long times melting the oscillator. This is the
prethermal scenario, though some work remains to rigor-
ously prove that there is a regime in which the timescale
increases exponentially (Mori, 2018; Ye, Machado, and Yao,
2021). Contact with a bath (for instance, air at T ¼ 293 K)
prevents the oscillator from melting, and it is helpful to
estimate the resulting activation time. In particular, the
nucleation of a “domain wall” corresponds to ripping the
oscillator in half, an energy scale so many orders of
magnitude above T ¼ 293 K, that the timescale is incon-
ceivable. However, collisions with an unlikely conspiracy of
air molecules can also cause the entire oscillator to collec-
tively hop between the two quasienergy minima; using
Eq. (12), one can estimate the quasienergy barrier for such
a fluctuation as Δ ∼ 2δð2 − ωD=ω0Þ.
At scales of kilograms, of meters, and at room temper-

ature, Δ=kBT again results in an inconceivably long time-
scale. However, for mesoscopic resonators it can be highly
relevant. An application of this effect is found in nanoscale
mass sensing based on the parametric oscillation of an AFM
tip. To weigh an object attached to the tip, one detects the
sharp jump in the amplitude of oscillations as the detuning
2 − ωD=ω0 is driven near parametric resonance; the precise
location of the jump is highly sensitive to the total mass.
However, finite-T noise rounds out the transition into a
nonlinear crossover, an effect that is experimentally observ-
able and limits the practical resolution of parametric-
resonance-based sensing (Zhang and Turner, 2004;
Prakash et al., 2012).
Two more intrinsically mesoscopic examples, which can

be recast in the language of activated time-crystalline order,
are ac-driven charge density waves (CDWs) and fractional
Shapiro steps in Josephson junction arrays. Both have
received extensive experimental attention; since the two
systems are conceptually equivalent (MacDonald and
Plischke, 1983; Bohr, Bak, and Jensen, 1984), we focus
largely on the former here. In a charge density wave material
such as NbSe3 (Grüner, 1988), the electron density sponta-
neously develops a charge density modulation at twice the
Fermi wave vector: nðxÞ ∼ n0 cos½2kFxþ θðxÞ�, where θ is the
slowly varying phase of the CDW. Treating θ as a single
macroscopic degree of freedom, one obtains a phenomeno-
logical equation of motion given by (Grüner, Zawadowski,
and Chaikin, 1981)

θ̈ þ ðω0τÞ−1 _θ þ sin θ ¼ EðtÞ=ET; ð19Þ

where sin θ accounts for the potential that pins the CDW, ω0τ
is a relaxation time (note that time is rescaled by the natural
oscillation frequency ω0) due to dissipation from the material,
EðtÞ is the applied bias, and ET is the threshold bias for
transport. This is the equation of motion for a damped and
driven pendulum. When EðtÞ is larger than the threshold ET ,
the system enters into a sliding state with h∂tθi ≠ 0, generat-
ing a finite current.

In the experiments of interest, a bias is applied with both dc
and ac components, EðtÞ ¼ Edc þ Eac cosðωDtÞ. In the sliding
state, the motion of the CDW over the periodic pinning
potential defines a frequency scale ωdc ≡ h _θi ≈ ω0τðEdc=ETÞ.
When ωdc ¼ ðp=qÞωD, commensuration effects allow the ac
oscillations to assist the motion of θ over the potential. Since
the current Idc is proportional to ωdc, commensuration can
lead to a plateau in Idc whenever ωdc ≈ ðp=qÞωD. This leads
to the emergence of a “Devil’s staircase” of plateaus (Zettl
and Grüner, 1983; Brown, Mozurkewich, and Grüner, 1984;
Thorne et al., 1987b; Hundley and Zettl, 1989) in the I-V
curve as Edc is swept at fixed Eac; see Fig. 11, which depicts
dV=dI versus the voltage V.
Most notably, for q ≠ 1 (see the prominent peak in

Fig. 11 for p=q ¼ 1=2) the response is subharmonic: the
CDW shifts by 1=q of a wavelength with each period of
the ac drive.
While Eq. (19) treats θ as a single macroscopic variable,

in the experiment there are spatial fluctuations that can be
accounted for by considering a 2D or 3D array of θðrÞ coupled
through an elastic stiffness. Middleton et al. (1992) showed
theoretically that the subharmonic response remains robust in
this many-body setting. In fact, in the overdamped regime
with a purely sinusoidal pinning potential, subharmonic
responses are found only when the problem is treated as a
many-body one.
The phenomenological equation of motion [Eq. (19)],

which predicts perfect SτB, neglects the effect of thermal

FIG. 11. Differential resistance measurements dV=dI in the
charge density wave system NbSe3. (a) A bias voltage VðtÞ ¼
Vdc þ Vrf cosðωDtÞ is applied, and the dc component of the
resistance dVdc=dIdc is measured, holding Vrf and ωD fixed.
Sharp peaks in the resistance correspond to plateaus in the I-V
curve. The location of these peaks can be attributed to a motion of
the CDW in which it shifts by p=q wave vectors per driving
period, resulting in a subharmonic response between the ac
components of the voltage and current. (b) In the absence of the
ac drive, the subharmonic response is absent. Adapted from
Brown, Mozurkewich, and Grüner, 1984.
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fluctuations that are present in experiments such as Fig. 11.
As discussed by Thorne et al. (1987a, 1987b), a careful
examination of the experimental I-V curves reveals that some
(but not all) of the subharmonic plateaus are rounded out in a
sample dependent fashion. Complementary to this, the spec-
tral distribution IðωÞ [or VðωÞ in current biased mode] shows
peaks at ω ¼ ðp=qÞωD with finite width, rather than perfect
Bragg peaks. This broadening is attributed to a distribution of
velocities ∂tθ throughout the sample, which, in the language
of time-crystalline order, implies the absence of perfect SτB.
Indeed, numerical simulations of driven 1D CDWs confirm
that finite temperature broadens the plateaus (Mali et al.,
2012). However, owing to thermal gradients generated due to
Ohmic heating, ac-driven CDWs do not appear to be par-
ticularly well suited for quantitatively investigating the tem-
perature dependence of the broadening at low T; see the
discussion in Sec. V.A.
Mathematically equivalent physics is found in the ac

Josephson effect (recall the related discussions in Sec. I).
In the McCumber model (McCumber, 1968) for a resistively
and capacitively shunted Josephson junction, the supercon-
ducting phase difference ϕ across a Josephson junction obeys
the equation of motion

ω−2
p ϕ̈þ ω−1

c
_ϕþ sinϕ ¼ IðtÞ=Ic; ð20Þ

where ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
2Ic=C

p
, ωc ≡ 2IcRN , and V=RN ¼ _ϕ=2RN is

the normal current across the junction. Here C is the
capacitance, I is the current across the Josephson junction,
Ic is the current, and RN is the normal resistance. The situation
considered in Sec. I occurs in experiments in which the
junction is underdamped. The dc current is carried entirely by
normal quasiparticles Idc ¼ In satisfying Idc=Ic ¼ ω−1

c
_ϕ or,

simply, Idc ¼ V=RN . An ac supercurrent flows in response to
the voltage drop across the junction IacðtÞ=Ic ¼ sinð2IdcRNtÞ.
However, in this underdamped regime the I-V curve is
hysteretic, and there is a branch in which the voltage drop
across the junction is zero as long as the dc current is less than
the critical current: Idc ¼ Ic sinϕ. This vertical step in the I-V
curve is followed by a plateau at I ¼ Ic from V ¼ 0 to
V ¼ IcRN , where it rejoins the other branch.
Returning to the general case of Eq. (20), we note that

this equation of motion is formally equivalent to the
CDW [Eq. (19)], and by analogy one also expects steps in
the I-V curve when the ac component of the current IðtÞ ¼
Idc þ Iac cosðωDtÞ is commensurate with the rational harmon-
ics of the dc voltage ωJ ¼ h _ϕi ¼ 2eVdc. The vertical step in
the superconducting branch of the hysteretic I-V curve in the
underdamped case is a trivial version of such a step. These
“Shapiro steps” were first observed at integer harmonics in
single Josephson junctions (Shapiro, 1963). Later experiments
(Benz et al., 1990; Lee et al., 1991) on arrays of Josephson
junctions revealed subharmonic Shapiro steps.

C. Ergodicity in open systems

At timescales t > eΔ=kBT , an activated time crystal loses
memory of the initial condition that distinguishes between the
m cycles of the SτB oscillation: its dynamics are ultimately

ergodic. Earlier in this Colloquium, ergodicity was introduced
as a property of a measure-preserving deterministic system.
The precise definition works differently in the stochastic
case, but intuitively still captures whether a system inevitably
“forgets” its initial condition. See Gielis and MacKay (2000)
and Gray (2001) for discussions of the technical aspects
required to make the definitions precise in the thermody-
namic limit.
In the stochastic setting, a probability distribution ρs is

an “invariant measure” of the dynamics if it is a fixed point of
the stochastic update Φ½ρs� ¼ ρs; i.e., it is a steady-state
distribution. A stochastic system is said to be ergodic if the
following two properties hold: (1) the dynamics have a unique
steady state ρs and (2) the long-time behavior of any initial
state relaxes to this steady state [limt→∞ ρðtÞ ¼ ρs]. As in the
closed, deterministic case, SτB in the sense of Eq. (3) requires
Φ to be nonergodic. Otherwise, at long times, the m-possible
orbits become indistinguishable and any oscillations will
decay.
Instead, a SτB phase will exhibit so-called asymptotic

periodicity (Lasota, Li, and Yorke, 1984; Losson and
Mackey, 1996). At long times the distribution relaxes to a
convex combination of m locally distinguishable distributions
ρp; ρðtÞ →

P
m
p¼1αpρpþt that are cyclically permuted under

the evolution Φ½ρp� ¼ ρpþ1 (with ρpþm ¼ ρp). While ρs ¼
ð1=mÞPpρp is a unique steady state, in the generic case where
the αp values are unequal, ρðtÞ will continue to oscillate so
that the limit limt→∞ ρðtÞ ¼ ρs fails to exist.3

The existence of true SτB in open dynamical systems
thus hinges on a far more fundamental question: Can a
locally interacting stochastic system generically break
ergodicity? This line of questioning has a deep history in
the fields of nonlinear dynamics, mathematical physics, and
computer science. The answer is intimately related to the
stability of phase coexistence and phase transitions in
stochastic systems.
We can illustrate the ideas at play by stripping away the

complexity of Hamiltonian dynamics and instead considering
a classical spin system. For specificity we start in equilibrium
with a classical Ising model HI½fσg�. While HI itself does not
define any dynamics, we may define a “kinetic Ising model,”
such as Glauber or Hasting-Metropolis rules, which update the
spin configuration σ → σ0 according to a local conditional
probability Φðσ0jσÞ that obeys detailed balance with respect
to HI. Detailed balance ensures that the distribution ρs ¼
e−βH=Z is a steady state. On a finite system at T > 0, standard
results guarantee that ρs is the unique steady state with a finite
relaxation time, so the process is ergodic (Feller, 1957).

3In a deterministic system, “ergodicity” governs the invariance of
Cesáro sums: limτ→∞ð1=τÞ

P
τ
t¼1O(ΦðtÞðxÞ). In this case, SτB implies

that the m-fold iterated map ΦðmÞ is not ergodic, but the map Φ itself
generally is ergodic (though it is not mixing). In the stochastic case,
however, ergodicity is usually defined to imply the stronger form of
convergence limτ→∞ ¼ ρs rather than limτ→∞ð1=τÞ

P
τ
t¼1ΦðtÞ½ρ0� ¼

ρs. By this definition, Φ itself is nonergodic. While the steady state
ρs ¼ ð1=mÞPm

p¼1ρp is unique and one has limτ→∞ð1=τÞ×P
τ
t¼1ΦðtÞ½ρ0� ¼ ρs, the limit limτ→∞ ρðtÞ does not exist.
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However, the thermodynamic limit leads to richer possibil-
ities. When h ¼ 0 and T is below the critical Ising temperature
(for example, when tuned to a first-order phase transition),
the phase coexistence of the two magnetized phases implies
the existence of two steady states ρðσÞþ ¼ ρð−σÞ−, and the
dynamics are not ergodic. However, for any finite h phase
coexistence is lost and the steady state is unique. This
illustrates a general principle in equilibrium: ergodicity break-
ing requires one or more parameters to be tuned to a first-order
phase transition, and in this sense is fine-tuned (or requires a
symmetry beyond time-translation invariance).
We note that one route around this equilibrium no go is to

consider a spin Hamiltonian with multibody interactions
(Kozin and Kyriienko, 2019) or a power-law interaction of
sufficiently slow falloff so that the energy penalty for domain
walls can be made to grow faster than the extensive energy
of the symmetry-breaking external field (Liggett, 2012).
Or, taking this to the extreme, one could instead consider
models with all-to-all couplings in the spirit of a mean-field
Hamiltonian, such that locality is lost entirely (Morita and
Kaneko, 2006; Russomanno et al., 2017; Lyu et al., 2020;
Ojeda Collado et al., 2021, 2023; Pizzi, Nunnenkamp, and
Knolle, 2021a; Yang and Cai, 2021). However, such models
are not local in the usual sense: their thermodynamic proper-
ties are not extensive in system size, among other anomalies.
Therefore, while such models can be used as the basis for
stabilizing even continuous SτB, the starting point is rather
different than the usual notion of locality implied in the
classification of phases.

D. Probabilistic cellular automata

Moving beyond equilibrium, one can consider more general
local Markov updates Φðσ0jσÞ of a discrete spin system
without reference to any particular H. Such models are a
type of probabilistic cellular automata (PCA) (Dobrušin et al.,
1990); the continuous-time generalization of PCA are called
interacting particle systems (Liggett, 2012). One particularly
convenient way to obtain a PCA is to start with a deterministic
cellular automata (CA) (Gutowitz, 1991) defined by a local
update rule σ → ΦCAðσÞ, and then follow each CA update
with random spin flips at an “error rate” ε. For Markovian
errors we then obtain a Markov process that is a perturbation
of the deterministic CA: Φ ¼ Φε∘ΦCA (we note that math-
ematical results on PCA are even more general, allowing for
non-Markovian errors). These models have been of interest to
the theoretical computer science community because CA are
Turing complete, so the study of the possible generic
behaviors of a PCA have implications for the generic
behaviors obtainable by a classical computer perturbed by
errors: for instance, can reliable systems emerge from unre-
liable components (Von Neumann, 1952)? For a review of
these connections between theoretical computer science and
more familiar notions in nonequilibrium statistical physics,
see Gray (2001).
From the perspective of time crystals, the relevant question

becomes the following: Are there CA that remain nonergodic
for generic small perturbations Φε? And if so, might such a
CA be the basis for spontaneous time-translation symmetry
breaking? These questions were answered in the affirmative

by Toom (1980) and Bennett et al. (1990). Before examining
the first question, we can sketch Bennett’s answer to the
second. Suppose there is a local, nonergodic CA, ΦCA, with
m-distinct steady states. For simplicity, we further assume that
these states are exchanged by a Zm symmetry, but (unlike a
kinetic Ising or Potts model) we assume that the nonergodicity
is stable to generic (and possibly Zm breaking) errors. We can
then define a rotating version of the CA by composing
ΦCA with the action, G2π=m, of Zm, yielding Φð2π=mÞCA≡
G2π=m∘ΦCA. By construction, if we compose m steps of the
rotating CA, it will be equivalent to composing m steps of the
original CA: Φm

CA ¼ Φm
ð2π=mÞCA, where Φm

CA corresponds to

applying ΦCA m times. Thus, if ΦCA is proven to be stably
nonergodic, Φð2π=mÞCA inherits this property and by construc-
tion exhibits the “asymptotic periodicity” of a time crystal,
cycling through the m fixed steady states of ΦCA.
A particularly important point is that (while convenient)

it is not necessary to assume thatΦCA exhibits a Zm symmetry
for stability. Indeed, if the nonergodicity of ΦCA is stable to
Zm-breaking perturbations, one could just as well have started
out with a perturbed version of ΦCA that breaks the Zm
symmetry. The construction thus satisfies the important
conceptual requirement that SτB does not depend on any
further internal symmetries.
Returning to the first question, the possibility of a local and

generically nonergodic PCAwas a long-standing question for
several decades [see the reviews by Dobrušin et al. (1990),
Lebowitz, Maes, and Speer (1990), and Toom (1995)] but was
finally answered in the affirmative in the groundbreaking
work of Toom (1980).

E. An absolutely stable open time crystal: The π-Toom model

The Toom CA is a 2D binary-spin model with a simple
“northeast corner” (NEC) majority rule that is defined as
follows (Toom, 1974, 1980). At each step, each spin follows
a majority vote among itself and its two north and east
neighbors: σx;yðtþ 1Þ ¼ majðσx;y; σxþ1;y; σx;yþ1Þ. This is a
seemingly innocuous modification of the T ¼ 0 nearest-
neighbor kinetic Ising rule, in which each spin would follow
a vote among its four fnorth; east; south;westg neighbors.
Note, however, that, due to the spatial asymmetry, the Toom
rule cannot be understood as minimizing the energy of any
Hamiltonian and does not obey detailed balance (Grinstein,
Jayaprakash, and He, 1985). This asymmetry ensures that if an
island of the minority spin nucleates, the NEC rule will cause
the island to shrink linearly in time from the NE direction
inward. This is far faster than the Ising model, where the
thermodynamic force on a domain wall depends on its local
curvature, and hence decays with the size of the island
(Bennett and Grinstein, 1985).
The Toom PCA is then obtained by perturbing with biased

errors in which, for example, spins flip up with error rate εp
and down with error rate εq. The bias b ¼ ðεp − εqÞ=ðεp þ εqÞ
breaks the Ising symmetry. There is nevertheless a finite
volume in fεp; εqg space in which two magnetized steady
states persist despite a bias that prefers one over the other
(Fig. 12). Rigorous results prove that the ergodicity breaking
is robust to essentially any sufficiently small perturbation,
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even a spatiotemporally correlated one or a noise distribution
that is not itself time-translation invariant (Toom, 1980;
Berman and Simon, 1988; Gacs, 2021). We note that this
last point distinguishes the “absolute stability” of the open
system π-Toom time crystal (which is defined next) from its
closed system counterparts (i.e., Sec. IV), where noise that
breaks the underlying discrete time-translation symmetry
would immediately destroy the time crystal.
With Toom having done the difficult part, the π-Toom

model is then defined as the antimajority NEC rule
σx;yðtþ 1Þ ¼ antimajðσx;y; σxþ1;y; σx;yþ1Þ. The π-Toom model
is a time crystal, which is stable to arbitrary perturbations (Yao
et al., 2020; Zhuang et al., 2021). The SτB of the π-Toom
model was pointed out over two decades ago by Bennett et al.
(1990), and later by Gielis and MacKay (2000), who referred
to it as an example of a “type-G phase transition.”
While the original Toom model exhibits m ¼ 2 steady

states, and hence is the basis for period m ¼ 2 SτB,
it generalizes to any m > 2 (Bennett et al., 1990).
Furthermore, Toom-like models exist in all dimensions
D > 1 simply by stacking the 2D version. In fact, an extension
in D ¼ 3 provides the basis for error-corrected classical
computing (Gács and Reif, 1988). The existence of stable
ergodicity breaking in 1D PCAwas shown only more recently
by Gács (2001). Taken together, PCA support absolutely
stable SτB of any period m ≥ 2 in all dimensions D ≥ 1.
Is the full error-correcting capability of the Toom and Gács

models really necessary for stable SτB? For example, in the
construction Φð2π=mÞCA ≡G2π=mΦCA we may instead take
ΦCA to be the kinetic Ising model or its generalization to
Zm. The ferromagnetic interactions of the Ising model are a
mild form of error correction in that they cause minority
islands to shrink due to surface tension. However, Bennett
et al. (1990) argued that this equilibrium form of error
correction is insufficient for stabilizing m > 2 SτB.
The reason for this is that for m > 2 the chirality of the

periodic evolution between steady states n → nþ 1modm
implies that there is no symmetry that forbids a stochastic
force per unit length from acting on a domain wall between
regions of n- and (nþ 1)-type steady states (such as those

favoring the growth of n at the expense of nþ 1modm). Such
a force is thus generic and will drive minority droplets to
nucleate and grow. This force is counteracted by the surface
tension of the ferromagnetism, which, however, decays with
the local curvature. Thus, the former force will always win out
for sufficiently large droplets, causing minority droplets to
proliferate and destroy SτB at long times. The Toom model
escapes this reasoning because its error correction effectively
exerts a force on domain walls that is independent of their
curvature, and can thus shrink minority droplets of any size
(Bennett and Grinstein, 1985).
However, the m ¼ 2 case is an exception because there is

no handedness to the periodic evolution. Even if there is a
force that favors, say, type n ¼ 0 over type n ¼ 1, because the
domains effectively switch type at each step, the net force on a
domain wall averages to zero over one period, and islands can
thus be shrunk via ferromagnetic surface tension (Bennett
et al., 1990). This implies that the binary-spin π-Ising model
can support SτB below the Ising critical temperature, as
was recently studied in detail (Gambetta, Carollo, Lazarides
et al., 2019).
It is natural to contrast this discussion with the classical

activated time crystal of Sec. V.A, which was not stable
against the proliferation of minority islands even though
m ¼ 2. To see why, recall that the emergent Ising degree
of freedom was effectively embedded into a larger continuous
state space such as σ ¼ sgn½sinðQÞ�. A domain wall between
σ ¼ 1;−1 could thus be either of two types, depending
on whether Q is wound clockwise or counterclockwise.
Because this handedness is preserved under the oscillation
Q → Qþ π, there is no symmetry that forbids a domain wall
from experiencing a net force that does not average to zero
over m ¼ 2 periods, even when the identities of the domains
themselves are exchanged.
Does this imply that if the binary-spin π-Ising model is

embedded in a model with additional degrees of freedom, the
SτB may not be generically stable? Or instead, may there be a
parameter regime of models like the Langevin-driven para-
metric oscillator arrays (12) that exhibit true, rather than
activated, SτB? Only time will tell.

F. Open Hamiltonian and quantum dynamics

While we have discussed the existence of stable time
crystals in the stripped-down setting of a PCA (Secs. V.D
and V.E), our original microscopic starting point (Sec. V) was
the periodically driven Langevin equation or its quantum
analog, the Lindblad equation. An interesting open question is
the following: Do the rigorous results for SτB in probabilistic
cellular automata translate to these settings? Since PCA
are motivated as a coarse-grained description of the
Hamiltonian world around us, it is tempting to speculate that
they do. Two recent studies have shown how the π-Toom
model can be embedded in classical Langevin (Zhuang et al.,
2021) or quantum Lindblad dynamics (McGinley, Roy, and
Parameswaran, 2021), and in both cases there is strong
numerical evidence for true SτB. However, there is not yet
a fully rigorous proof as in Toom’s and Gács’s work. While
Toom-like stability for a continuous-time version of a PCA
was proved by Gács (2001), the state space in that model is

FIG. 12. Phase diagram of the Toom model. After each CA
update, spins randomly flip up or down with rate εp or εq,
respectively, with “bias” ðεp − εqÞ=ðεp þ εqÞ and “amplitude”
εp þ εq. Within the two-phase region, there are two distinct
steady-state distributions and the dynamics are not ergodic.
Unlike the Ising model, the system can thus remember 1 bit
of information even in the presence of biased noise. Adapted from
Bennett and Grinstein, 1985.
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discrete. As we discuss in Sec. VI, the answer to this question
is a special case of a deeper one: Is error-corrected computing
physically realizable in this Universe?

VI. OUTLOOK AND FUTURE DIRECTIONS

A. New venues for time crystals

In Sec. III.C, we introduced the following mantra: Where
there is ergodicity breaking, there will be time crystals. This
suggests that new developments in the ergodicity breaking of
many-body systems, ranging from Hilbert space fragmenta-
tion (Sala et al., 2020; Yang et al., 2020) and shattering
(Khemani, Hermele, and Nandkishore, 2020) to quantum
scars (Turner et al., 2018b; Serbyn, Abanin, and Papić, 2021),
confinement (Collura et al., 2022), and Stark localization
(Schulz et al., 2019; van Nieuwenburg, Baum, and Refael,
2019; Doggen, Gornyi, and Polyakov, 2021), represent fertile
ground for exploring novel formulations of time-crystalline
order (Zhao, Knolle, and Moessner, 2022).

1. Quantum many-body scars

Interacting quantum systems can exhibit a weak breakdown
of thermalization, where certain initial conditions exhibit
persistent many-body revivals in time (Bernien et al., 2017;
Turner et al., 2018a). This phenomenon, called quantum
many-body scars, is associated with the presence of anoma-
lous, nonthermal eigenstates; see Serbyn, Abanin, and Papić
(2021) for a recent review on the topic. From the perspective
of time-crystalline order, the presence of scar states can
cause the system to undergo periodic entanglement and dis-
entanglement cycles following a quench (Ho et al., 2019;
Michailidis et al., 2020; Serbyn, Abanin, and Papić, 2021). In
practice, however, quantum many-body scar states are fragile
since they rely upon the existence of a dynamically discon-
nected subspace of nonthermalizing eigenstates; indeed, the
presence of generic interactions is expected to eventually lead
to thermalization (Lin, Chandran, and Motrunich, 2020).
The connection between quantum many-body scars and

time-crystalline behavior has recently been explored in a
Rydberg-based quantum simulation platform (Bluvstein et al.,
2021; Maskara et al., 2021). In particular, the researchers
observed that the coherent revivals associated with quantum
many-body scars could be stabilized by additional periodic
driving. This periodic driving leads to both an increase in the
lifetime of the scarred oscillations and the emergence of a
period-doubled, subharmonic response. While this is remi-
niscent of prethermal time-crystalline order (Sec. IV.D), we
note two important differences. First, the experiments are
performed in a regime where the driving frequency is of
similar order as the local energy scales of the many-body
system. Second, the subharmonic response exists only for
Néel-like initial states (associated with the quantum scars)
(Maskara et al., 2021). Looking forward, it will be interesting
to explore the possibility that periodic driving can enhance the
stability of nonergodic dynamics. In addition to novel settings
for observing time-crystalline order, the ability to parametri-
cally control the lifetime of this order could also lead to
potential applications in areas such as quantum metrology and
quantum information science.

2. Stark time crystals

In the presence of an electric field, the wave function of
electrons in a material is localized to a region whose size
decreases as the field increases. In the absence of interactions,
this phenomenon, which arises without disorder, is known as
Wannier-Stark localization (Wannier, 1959). Recent theoreti-
cal and experimental investigations have explored whether
such localization can persist in the presence of many-body
interactions, leading to Stark many-body localization (Schulz
et al., 2019; Guo et al., 2020; Morong et al., 2021; Scherg
et al., 2021).
Kshetrimayum, Eisert, and Kennes (2020) discussed the

possibility of discrete time crystals protected from Floquet
heating by Stark many-body localization. They probed the
existence of a Stark time crystal using numerical simulations
of a one-dimensional spin chain. Focusing on two specific
initial states (i.e., the ferromagnetic and antiferromagnetic
states), Kshetrimayum, Eisert, and Kennes (2020) observed
that for a sufficiently strong linear potential the states exhibit
time-crystalline order, which seems to be robust to π-pulse
imperfections (recall the discussions in Sec. IV.B). However,
when differences in the linear potential coincide with integer
multiples of the drive frequency, they observed the coherent
self-destruction of time-crystalline behavior. An advantage of
the clean, disorder-free setting is that one can imagine the
possibility of order that spontaneously breaks both spatial and
time-translation symmetries. This theme has been studied in a
number of contexts (Smits et al., 2018; Träger et al., 2021;
Žlabys et al., 2021) and remains an active area of exploration.

B. Prethermalization beyond Floquet quantum systems

1. Classical prethermal discrete time crystals

In Sec. IV.D, we focused our attention on prethermal time
crystals in closed (i.e., unitarily evolving) quantum systems.
However, as previously discussed, one of the central features of
Floquet prethermalization (i.e., exponentially slow heating) is
also expected to occur in classical many-body systems (Mori,
2018; Howell et al., 2019; Hodson and Jarzynski, 2021). This
immediately begs the following question: Can such systems
also host prethermal time crystals (Mori, 2018; Howell et al.,
2019; Hodson and Jarzynski, 2021; Pizzi, Nunnenkamp, and
Knolle, 2021b; Ye, Machado, and Yao, 2021)?
Recent work by Pizzi, Nunnenkamp, and Knolle (2021b)

and Ye, Machado, and Yao (2021) answered this question
in the affirmative.A practical advantage of the generalization to
classical systems is that it immediately enables the study of
PDTCs in dimensions d > 1. For example, Ye, Machado,
andYao (2021) studied a nearest-neighbor-interacting classical
Floquet spin model on the square lattice. Although the original
Floquet evolution does not exhibit any symmetries, Heff
exhibits an emergent Z2 Ising symmetry. Unlike in the one-
dimensional case discussed in Sec. IV.D.2, in two dimensions
this Ising symmetry can be broken at finite temperatures.

2. Higher-M discrete time crystals

In both the quantum and classical settings, the emergent
symmetry in Heff is not restricted to just a Z2 symmetry and
different subharmonic PDTCs (i.e., beyond period doubling)
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can be realized (Giergiel et al., 2018, 2020; Surace et al.,
2019; Kelly et al., 2021; Pizzi, Knolle, and Nunnenkamp,
2021). The simplest approach to doing this is to utilize a
Floquet evolution where the “π pulse” [see the discussion
following Eq. (14)] is adjusted to be close to a π=M pulse. In
certain scenarios, this choice naturally leads to an effective
Hamiltonian Heff that exhibits a ZM symmetry (Pizzi,
Nunnenkamp, and Knolle, 2021b). When this ZM symmetry
is spontaneously broken, the system will oscillate at a
subharmonic frequency ∼ωD=M throughout the prethermal
regime. Using this strategy, Pizzi, Nunnenkamp, and Knolle
(2021b) constructed a “phase diagram” for an ωD=4 PDTC in
a three-dimensional classical spin system.
When one utilizes a fractionalM in this strategy, the dynamics

can be even richer than in the integer case. Indeed, Pizzi, Knolle,
and Nunnenkamp (2021) explored this scenario in the presence
of long-range interactions (Russomanno et al., 2017; Huang,
Li, and Yin, 2018; Kozin and Kyriienko, 2019) and observed
signatures of PDTC order at a variety of fractional frequencies.

3. Prethermal time quasicrystals

Building upon generalizations to higher-M PDTCs and
fractional PDTCs (Matus and Sacha, 2019; Pizzi, Knolle, and
Nunnenkamp, 2021; Pizzi, Nunnenkamp, and Knolle, 2021b;
Ye, Machado, and Yao, 2021), a natural question to ask is
whether there can be nontrivial phases of matter in isolated
many-body systems that are driven in a way that is not
periodic in time. Here our focus is on the closed system,
prethermal setting (Fig. 1), where a periodic drive is replaced
by a quasiperiodic drive (Ringot et al., 2000; Gommers,
Denisov, and Renzoni, 2006; Crowley, Martin, and Chandran,
2019; Zhao, Mintert, and Knolle, 2019; Mori et al., 2021;
Zhao et al., 2021). Recent work has shown that such systems
can host prethermal quasiperiodically driven phases of matter
and, in particular, can give rise to discrete time quasicrystals
(Dumitrescu, Vasseur, and Potter, 2018; Else, Ho, and
Dumitrescu, 2020).
Before proceeding, however, we note that related phenom-

ena have been explored in nonlinear dissipative dynamical
systems (see the coupled map lattice discussions in Sec. II.A)
driven at two incommensurate frequencies (Sethna and Siggia,
1984; Held and Jeffries, 1986; Romeiras and Ott, 1987; Ding,
Grebogi, and Ott, 1989; Flicker, 2018).
The spectral content of a periodic drive contains peaks only

at a single drive frequency ωD and its harmonics nωD for
integer n. By contrast, the spectral content of a quasiperiodic
drive has peaks at integer linear combinations: n1ω1 þ
n2ω2 þ � � � þ nmωm for some m > 1 number of incommen-
surate frequencies fω1;…;ωmg. As in Sec. IV.D, in order to
discuss prethermal phases, it is necessary for the system to
exhibit slow heating (i.e., energy absorption) from the drive.
For quasiperiodic driving, this is strictly more challenging
than the original Floquet setting since the drive is technically
able to supply energy in arbitrary units. Nevertheless, an
analogous slow-heating result was proven by Else, Ho, and
Dumitrescu (2020). Before heating occurs (Fig. 13), the
dynamics of the quasiperiodically driven system are well
approximated (in a rotating frame) by an effective static
Hamiltonian [in direct analogy to Sec. IV.D and Eq. (16)].

To discuss the possibility of prethermal time quasicrystals
(which are stable during the prethermal timescale t < t�),
Else, Ho, and Dumitrescu (2020) began by defining what an
“order parameter” for such a phase would look like. The
subtlety is that a quasiperiodically driven system does not,
strictly speaking, have any remaining time-translation sym-
metry to break. However, such a system can still exhibit a
well-defined notion of a fractional or subharmonic frequency
response (Fig. 13). In particular, an observable can respond in
a quasiperiodic manner with base frequencies: fω̃1;…; ω̃ng.
When ω̃j’s are not harmonics of the original driving frequen-
cies, then the system is said to exhibit a fractional frequency
response and discrete time quasicrystalline order (Else, Ho,
and Dumitrescu, 2020). Connecting with our previous dis-
cussions about emergent symmetries in Heff , one can think of
the discrete time quasicrystal as emerging from the sponta-
neous breaking of a different finite Abelian group symmetry
(i.e., one that replaces the ZM symmetry discussed in
Secs. III.B.2 and VI.B.1).
We end this section by pointing the reader in a number of

related directions that fall outside the prethermal context.
Many of these connect to the idea of quasiperiodic pattern
formation in parametrically driven systems. For example, in
the context of two-frequency forcing, even when the frequen-
cies are commensurate (implying that they do not exhibit a
quasiperiodic response in time), in certain scenarios one can
realize stable Faraday-wave patterns that are analogous to a
two-dimensional quasicrystal (Edwards and Fauve, 1993;
Besson, Stuart Edwards, and Tuckerman, 1996; Silber,
Topaz, and Skeldon, 2000). Various incarnations of a quasi-
periodic response in time have also been explored in both
theoretical proposals and experiments on cold atomic systems
(Autti, Eltsov, and Volovik, 2018; Giergiel et al., 2018;
Giergiel, Kuroś, and Sacha, 2019; Pizzi, Knolle, and
Nunnenkamp, 2019; Chinzei and Ikeda, 2020; Zhao et al.,
2022). For example, Giergiel, Kuroś, and Sacha (2019)
explored the dynamics of an ultracold atomic ensemble
bouncing between two orthogonal harmonically oscillating
mirrors. By tuning the bare frequencies of the unperturbed
particle motion, the system can reproduce fragments of the
Fibonacci sequence encoded via the bounces of the atomic
ensemble off of the two mirrors.

FIG. 13. Depiction of a prethermal time quasicrystal emerging
from a quasiperiodically driven quantum system. During the
prethermal regime, local observables exhibit discrete time quasi-
crystalline order, which ultimately melts at late times as the
system Floquet heats to a featureless infinite-temperature state.
Adapted from Else, Ho, and Dumitrescu, 2020.
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C. Applications: From metrology to quantum information
benchmarking

The periodic control underlying the discrete time crystal is,
more generally, an indispensable tool in the context of nuclear
magnetic resonance spectroscopy (Bloembergen, Purcell, and
Pound, 1947, 1948; Waugh, Huber, and Haeberlen, 1968),
quantum information science (Khodjasteh and Lidar, 2005;
Biercuk et al., 2009), and quantum simulation (Bloch,
Dalibard, and Nascimbene, 2012; Goldman et al., 2014).
Building upon this connection, Choi, Yao, and Lukin (2017)
explored the possibility of engineering a Floquet system
where quasienergy gaps can protect entangled states from
static perturbations while still ensuring their sensitivity to an
oscillating signal. In a sense, this idea can be understood as a
generalization of spin echo spectroscopy that utilizes many-
body states. It is also related to the conventional concept of
using phases of matter with spontaneously broken symmetries
for sensing (Frérot and Roscilde, 2018; Bennett et al., 2020).
Choi, Yao, and Lukin (2017) investigated the use of a time-

crystalline Floquet sequence to stabilize Schrödinger cat states
that are typically extremely fragile against local perturbations.
They analyzed a technique that allows for the enhancement
of metrological bandwidth while maintaining the sensitivity
and discussed an example in the context of the precision
measurement of ac magnetic fields. More recently these ideas
have inspired new many-body driving protocols aimed at
circumventing the so-called interaction limit for quantum
sensing (Zhou et al., 2020).
Beyond metrology, the fact that signatures of time-crystal-

line order have been observed in a diverse array of physical
platforms (see Secs. IV.C.1, IV.C.2, and IV.C.3) suggests the
possibility of cross platform benchmarking for the perfor-
mance of near term quantum devices (Preskill, 2018). This
idea builds on the more general thread that exploring non-
equilibrium dynamical phenomena may represent a particu-
larly natural strategy for verifying and validating noisy
intermediate-scale quantum technology. Finally, suggestions
for utilizing time-crystalline order as a frequency standard or
for beyond-standard-quantum-limit quantum sensing have
also been discussed (Lyu et al., 2020), although explorations
in this direction remain relatively nascent.

D. Conclusions

As we have seen in this Colloquium, recent evidence points
to at least two venues where infinitely long-lived time crystals
may exist: (i) SτB that is stable to time-translation-invariant
perturbations might occur in periodically driven closed 1D
quantum systems in the presence of strong disorder
(Sec. IV.B) and (ii) SτB that is stable to arbitrary perturbations
can occur in periodically driven D ≥ 1 open systems, such as
the π-Toom model, whose dynamics effectively implements a
form of error correction (Sec. V.E). These two flavors of time
crystals evade ergodicity through vastly different means,
either by strongly localizing the degrees of freedom or by
actively shrinking potentially ergodicity-generating fluctua-
tions. Between these two extremes lie two regimes of time-
crystalline behavior that are exponentially long-lived: pre-
thermal time crystals in closed systems (both classical and

quantum) and activated time crystals in open systems.
Although ergodicity is deferred in both cases, it is inevitable
in the long run (Palmer, 1982; Petersen, 1989; Walters, 2000).
The possibility of SτB in driven open systems can be

understood as one consequence of a more radical form of
ergodicity breaking: fault-tolerant computation. There is a
long history of understanding computation as a fundamentally
physical process, and the subsequent constraints that arise
from thermodynamics: Computers may be thought of as
engines for transforming free energy into waste heat and
mathematical work (Landauer, 1961; Bennett, 1982; Wolpert,
2019). In this point of view, a time crystal can be understood
as a physical realization of a simple computer program: while
true, apply a global NOT gate. If the program can execute
perfectly despite faulty (noisy) gates, and with a physical
implementation that relies only on local interactions, the
execution of such a program can be understood as a non-
equilibrium “phase of matter,” and the error threshold for
fault tolerance can be understood as a nonequilibrium phase
transition into a time-crystalline phase.
Gács and Reif (1988) and Gács (2001) showed that fault-

tolerant classical computation can indeed be realized as a
locally interacting autonomous process in the thermodynamic
limit, and this work was later used to prove that fault-tolerant
quantum computing can be as well (Harrington, 2004;
Dauphinais and Poulin, 2017). One could thus realize a
time-crystalline phase by repeatedly running the program
NOT on such an error-corrected computer, either quantum or
classical. In this sense, the existence of time crystals in open
systems is an elementary application of deeper results regard-
ing the physical realizability of error correction in autono-
mous, locally interacting systems.
One open question involves understanding how the tran-

sition from exponentially to infinitely long-lived time crystals
precisely occurs. Indeed, as disorder is increased in closed 1D
quantum systems, one expects a sharp phase transition to
occur from the prethermal discrete time crystal (Sec. IV.D) to
the Floquet-MBL discrete time crystal (Sec. IV.B). One
expects a similar transition from the activated DTC to the
Toom-type time crystal, as one tunes a uniform antimajority-
vote rule toward the antimajority NEC rule.
One possibility is that the exponentially long-lived time

crystals’ lifetimes [for instance, scaling as ∼AeωD=J in the
prethermal case (Sec. IV.D) or as ∼AeΔ=T in the activated
case (recall that Δ is the quasienergy barrier defined in
Sec. V.A)] exhibit a diverging prefactor. For example, as the
transition is approached, A could diverge as A ∼ jg − gcj−y,
where g is the tuning parameter. An alternate possibility is
that the effective energy scale 1=J or Δ might diverge at the
transition.
A second set of open questions is whether a direct transition

is possible from a Floquet-MBL discrete time crystal to a
π-Toom or Gács-type time crystal (or something continuously
connected to it). This possibility seems a bit unlikely since
such a transition would have to occur precisely when the
coupling to a bath is zero, which is where the system goes
from closed to open. On the other hand, a Floquet-MBL
discrete time crystal is what we would create with a perfect
quantum computer executing precisely the same set of gates at
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each time step. Meanwhile, a π-Toom time crystal is what we
might create with a noisy but fault-tolerant quantum computer
in which error correction was governed by a probabilistic
cellular automaton. But since the former could be simulated
by the latter, one might also logically expect them to be
separated by no more than a second-order phase transition at
which the rate of entropy production rises from zero with a
discontinuous derivative.
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