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Abstract

Programmable quantum simulators have proven a powerful tool for studying strongly correlated
matter. In particular Rydberg atoms trapped in optical tweezer arrays have been established as an in-
teresting playground for analog quantum simulation of quantummaterials due to their tunable in-
teractions and the ability to arrange hundreds of atoms in a wide range of lattice geometries. Recent
investigations have studied a plethora of phases of matter in these systems including spin liquids
and antiferromagnets. However, cooling into these phases remains an elusive challenge as adiabatic
methods become notoriously difficult upon approaching a phase transition. In this work, we use
matrix product state methods to investigate two cooling approaches that engineer the system to act
as its own bath.

The first one, conformal cooling, involves sudden time evolution under a spatially modulated
Hamiltonian to induce a temperature gradient, resulting in entropy flowing from one subsystem
into another upon equilibration. Rydberg atom tweezer arrays are a natural candidate for this
ansatz due to their precise spatial control. This enables rescaling the interactions between Ryd-
berg atoms by appropriately changing the interatomic distance. We explore the phase diagram of
the one-dimensional Rydberg blockade model as an experimentally viable proof of concept. While
ergodicity breaking impedes cooling in theZ2 phase, we identify the critical point between theZ2
and paramagnetic phases as a promising candidate for preparing low-energy states. Optimizing over
the parameters of the spatial modulation, we observe overcooling for shallow linear modulations at a
transient time scale, wherein the cooling exceeds thermodynamic expectations by more than a factor
of 2. We explain this phenomenon in terms of mobile long-lived quasiparticles at the system-bath
boundary and investigate its contribution to cooling in the thermodynamic limit. However due
to the lack of finite-temperate order in the 1D Rydberg blockade model, cooling into the ground
state is required to observe order which posits a challenge. To this end, we propose the 2D Rydberg
blockade model as a more promising candidate to perform conformal cooling as it exhibits antiferro-
magnetic order at finite temperature. Our discussion focuses on potential applications in near-term
experimental implementations.

We also investigate a second approach for preparing low-temperature states via thermofield-
double (TFD) states. We study the ground state of two locally coupled spin- 12 isotropic Heisenberg
chains, which exhibit TFD-like behavior, up to chain lengths of L = 256. A comparison of the
correlations shows excellent agreement at short distances between the coupled ground state and a
corresponding Gibbs state with deviations at long length scales. A perturbative argument for small
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coupling strengths g predicts these deviations to vanish, provided that the energy gap between the
ground state and first excited state scales sublinearly in g. Our results indicate a linear gap scaling
in good agreement with conformal field theory predictions, resulting in a nonvanishing first-order
correction to the ground state. Finally we discuss the adiabatic preparation of this ground state
to perform finite-temperature quantum simulation. A key advantage over existing methods is the
guarantee of a nonvanishing gap along the adiabatic path, making it suitable for finite-temperature
quantum simulation on near-term experiments.
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0
Introduction

The study of phases of matter has a long tradition in physics. Generations of physi-

cists, dating back to the ancient Greeks, have dedicated their work towards answering the funda-

mental question: which unique forms can matter take? Interestingly the study of the forms, or

phases, of matter is subtle. While there are four common phases of matter (solid, liquid, gas and

plasma) that the reader may be familiar with, an expansive catalogue has been discovered. Nowa-
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days, efforts to explore these novel phases of matter and the transitions between them are at the

heart of condensed matter and statistical physics. Among this plethora are crystals, superconduc-

tors, and Bose-Einstein condensates which have been extensively studied over the last century. These

examples and many more fall under the Ginzburg-Landau paradigm describing symmetry-breaking

phase transitions with local order parameters. Recently, more unconventional phases not captured

by this formalism including topological ones have garnered attention.

A common aspect of all of the aforementioned exotic phases is that they emerge as a thermody-

namic control parameter, most commonly the temperature, is tuned resulting in transitions between

distinct phases. In condensed matter physics these transitions have historically been studied in solid-

state materials, where well-established methods enable ever colder regimes: Liquid nitrogen can be

used to reach 77K and liquid helium is often used to cool to temperature of 4K. Using state-of-the-

art dilution fridges experiments can reach temperatures as low as 10mK—sufficiently cold for the

emergence of many interesting phases of matter. Specialized methods like adiabatic demagnetization

can go beyond these limits in some cases.

Nevertheless these systems are ultimately limited by the tunability of the physical parameters.

In 1982 Richard P. Feynman proposed an idea to improve the flexibility of materials that can be

studied17: what if we built fully controllable synthetic quantum systems that we can use to sim-

ulate complicated models? Four decades later this is indeed becoming a reality. To complement

conventional solid-state physics, extensive development of quantum simulation techniques enable

engineering quantummany-body systems out of individual atoms, ions and photons. This enables

a tremendous degree of control over the Hamiltonian—a feature largely absent in traditional con-

densed matter. There are two sides to this coin however: The precise control over the system param-

eters arises by isolating the system from the environment. At the same time this isolation makes it

challenging to remove energy and entropy from the system.

The emergence of these platforms for quantum simulation has stimulated the development
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of new strategies for cooling these systems to prepare low-entropy quantum states. They can be

roughly grouped into three categories:

1. adiabatic preparation,

2. optimal control theory, and

3. engineering a subsystem of the system to act as its own bath.

We note that these methods are designed for analog quantum devices where one has some control

over the Hamiltonian. Digital quantum computers, which make use of a discrete set of logical op-

erations known as gates, have access to other methods including variational75,86,37,80 or algorithmic

cooling approaches92.

Adiabatic preparation is based on the adiabatic theorem: if the Hamiltonian of a system is slowly

changing, then the system will remain in the instantaneous ground state at all points during the

evolution. In principle, this is a powerful method to prepare complex many-body states. Given a

HamiltonianH0 whose ground state |ψ0⟩ is easy to initialize, the target ground state |ψ1⟩ of Hamil-

tonianH1 is prepared by evolving under the HamiltonianH(s) = (1 − s)H0 + sH1, where

s(t = 0) = 0. If s(t) changes sufficiently slowly, then the adiabatic theorem guarantees that the final

state for s = 1 is |ψ1⟩. However, the time scale for ensuring adiabaticity during the evolution is de-

termined by the inverse gap of the Hamiltonian, i.e., the energy difference between the ground and

the first excited state. Crossing a phase transition or critical point is accompanied by the gap becom-

ing arbitrarily small, increasing the time scale for cooling unfavorably. While it can be successfully

employed in some cases4,7,14,64,59, the capabilities of adiabatic preparation are limited as interests

shift to increasingly large and higher dimensional systems.

The second approach, optimal control theory, broadly involves optimizing an objective function

via time-dependent control parameters given physical constraints. Historically, this has been applied

3



in a wide array of fields spanning frommacroeconomics to aeronautics34, for example to minimize

the fuel use of spacecrafts by dynamically adjusting the rocket thrust. In the context of preparing

low-temperature many-body states, this approach is often referred to as shortcuts to adiabaticity. In

comparison to adiabatic preparation, where the leakage into excited states is avoided entirely, this

approach aims to reproduce the final state by strategically taking faster shortcuts through excited

states. Generically this requires elaborate time-dependent control of system parameters. It has led to

improvements in atomic state preparation, in particular the stimulated Raman adiabatic passage79,

and faster quantum gates as recently demonstrated by Evered et al.. While the last decade has seen

the development of various approaches and applications to engineered quantum systems, no en-

compassing theory exists22. For a comprehensive review of this topic, see the work by Guéry-Odelin

et al..

The last approach is centered around engineering a subsystem to behave as the bath for the rest

of the system90,36, shifting entropy or energy from one subsystem into another. In the context of

trapped atoms, this idea was brought up as early as 200969. Since then, several approaches have been

proposed including shifting entropy from one atomic species to another, seeking to trap excitations

in the edge of the system to remove energy from the bulk and minimize finite size effects36, or en-

gineering an effective temperature gradient by partially rescaling the Hamiltonian of the system90.

The latter idea is known as conformal cooling 90 and is a focus of this thesis*.

Outline

Here we investigate the first and third strategy as candidates for cooling engineered quantummany-

body systems, i.e., adiabatic preparation and engineering the system to be its own bath. This thesis

is organized as follows: Chapter 1 is dedicated to conformal cooling quenches. We first provide in-

*To avoid confusion, we note that conformal cooling refers to the approach proposed by Zaletel et al..
Coincidentally, it also refers to an unrelated method in plastic moulding.
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tuition including thermodynamic arguments in Sec. 1.1, then we discuss Rydberg atoms trapped in

tweezer arrays as natural candidates for implementing this protocol, and investigate the efficacy of

this procedure throughout its phase diagram. Section 1.2.2 presents numerical results that demon-

strate substantial cooling at the critical point between the disordered and the ordered phase which

we will subsequently study in detail.

Another approach to engineering a system to be its own bath is by preparing a state whose re-

duced state on one half of the system is given by a thermal state. This is the case for the thermofield-

double (TFD) state. In Ch. 2 our focus shifts towards the adiabatic preparation of the TFD in cou-

pled chains. In Sec. 2.1 we highlight the motivation for preparing low-energy thermal states and

present recent insights in this field from high-energy physics. We point out advantages of the pro-

posed adiabatic approach to study low-temperature phases of matter over traditional approaches. In

particular we demonstrate that dealing with vanishing gaps is generally less problematic. We study

this protocol in the spin- 12 isotropic Heisenberg model, where we combine numerical results with

conformal field theory predictions to make encouraging findings for long chains.

Finally, we discuss our results in Ch. 3 with a focus on near-term implementation in Rydberg

atom tweezer arrays. We conclude with insights into alternative experimental investigations as well

as long-term prospects and challenges for the proposed approaches to cooling engineered many-

body systems.

It is assumed throughout this work that the reader is familiar with quantummechanics, the Dirac

notation and two-level systems on the level of the Bloch sphere. For the remainder of this thesis we

work with natural units, i.e., ℏ = kB = 1 for Planck’s constant and the Boltzmann constant. We

refer to relevant references and reviews for interested readers.
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1
Conformal Cooling Quenches

The most natural way of cooling a physical system is to introduce a colder envi-

ronment: putting an ice cube into a hot tea will eventually cool down the liquid to a more pleas-

ant temperature. Conformal cooling borrows this idea for engineering a many-body system to be its

own bath. This chapter focuses on using quenches under spatially deformed Hamiltonians to trans-

fer entropy and energy out of the system of interest. Our results demonstrate substantial removal of
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energy—beyond expected values—within experimentally viable time scales, although this cooling

remains insufficient for the observation of ordered phases.

1.1 Intuition for Conformal Cooling

Introduced by Zaletel et al., conformal cooling works by spatially modulating the magnitude of the

Hamiltonian in a subsystem. Imagine rescaling the HamiltonianH toH′ = λH (λ > 0) as is

illustrated in Fig. 1.1a), thereby changing the energy scale from E to E′ = λE. Thermodynamic

considerations then provide intuitive arguments. Conventionally, temperature is defined as the

inverse derivative of the entropy at a given energy,

T =

(
∂S
∂E

)−1
, (1.1)

where S denotes the entropy and E is the energy. The temperature changes according to

T′ =

(
∂S
∂E′

)−1
=

(
∂S
∂E

∂E
∂E′

)−1
= λ

(
∂S
∂E

)−1
= λT (1.2)

as is readily seen from Eq. (1.1).

While this lowers the temperature of the system, this is not helpful by itself: after all the goal is

to reach low-entropy states, yet the entropy and the state is unaffected by this process. However,

if brought in contact with a system at temperature Twith respect toH, this creates a temperature

gradient across the two subsystems. Note that we refer to the subsystem with Hamiltonian λH as

the bath and the one with HamiltonianH as the system. Following global thermal equilibration,

the system and bath are left at some temperature Tf with λT < Tf < T. As seen in Fig. 1.1a) this

generically implies a decrease in entropy as well—thus fulfilling the initial premise that we had set

out for.

7



<latexit sha1_base64="jIPmEeEZZc+ArNamnbijh3rkkuE="></latexit>

�T

<latexit sha1_base64="HJU+GNkRbXIq5mKwq8tQ7D3ndmg=">AAAC3XichVFNLwRBEH3G9/fi6LKxkThtZkVwFF9xkZBYJMimZ5Q12flKT69g4+gmrm6u/CV+i4M3bUgQ0ZOeqn716nVVl5eGQWZc96XL6e7p7esfGBwaHhkdGy9NTO5nSVv7UveTMNGHnsokDGKpm8CEcphqUZEXyoHXWsvjBxeisyCJ98xVKieRasbBWeArQ6hRmjw2cmk6exKlopVpa7lplCpu1bWr/NupFU4FxdpJSq84xikS+GgjgiCGoR9CIeN3hBpcpMRO0CGm6QU2LrjBEHPbZAkZimiL/yZPRwUa85xrZjbb5y0ht2ZmGbPcm1bRIzu/VehntG/c1xZr/nlDxyrnFV7RelQctIrbxA3OyfgvMyqYn7X8n5l3ZXCGZdtNwPpSi+R9+l8664xoYi0bKWPDMpvU8Oz5gi8Q09ZZQf7Knwpl2/EprbJWrEpcKCrqadr89VkPx1z7OdTfzv58tbZYXdhdqKysFgMfwDRmMMepLmEFW9hhHT4u8YgnPDsN59a5c+4/qE5XkTOFb8t5eAeiq5cc</latexit> T
em

p
er
at
u
re

<latexit sha1_base64="A56W508bRWLC6/ynqFBD9KHdPYY="></latexit>

Position

<latexit sha1_base64="lMRE+jgWDIgpIPvLUeJ6FuhoXv8="></latexit>

a)

<latexit sha1_base64="RQj/rfTEGitJusiUKGqA2eZg1uA="></latexit>

b)

<latexit sha1_base64="tW3z3TwxfhAzP6cfzSi4a2a4FXM="></latexit>

T

<latexit sha1_base64="UdsH+DH0eNq2rGXz4jrb5JLsIbw="></latexit>

Tf

<latexit sha1_base64="1k0L5SsZdk3ugspZTDLVMFIsvtc=">AAAC13ichVFLT8JAEB7qC/CFevTSSEy8SIoh6JH4ihcTNAIaHqYtS23oK9uFBAnxZrx686r/Sn+LB7+uxUSJYZvtzH7zzbczO0bg2KHQtPeEMjM7N7+QTKUXl5ZXVjNr69XQ73GTVUzf8fm1oYfMsT1WEbZw2HXAme4aDqsZ3aMoXuszHtq+dyUGAWu6uuXZHdvUBaBWI+B+IHz1sjXcLY5uM1ktp8mlTjr52MlSvMp+5oMa1CafTOqRS4w8EvAd0inEV6c8aRQAa9IQGIdnyzijEaWR2wOLgaED7eJv4VSPUQ/nSDOU2SZucbA5MlXaxj6VigbY0a0Mfgj7iX0vMevfG4ZSOapwAGtAMSUVz4ELugNjWqYbM8e1TM+MuhLUoQPZjY36AolEfZo/OseIcGBdGVHpRDItaBjy3McLeLAVVBC98lhBlR23YXVpmVTxYkUdehw2en3UgzHn/w510qnu5fLFXOGikC0dxgNP0iZt0Q6muk8lOqMy6jCh/EKv9KbcKA/Ko/L0TVUScc4G/VrK8xdlRJRH</latexit>

/ R�6

<latexit sha1_base64="i4BmCp24+yKSxqSy8WL/BOdNC+Q="></latexit>

Hamiltonian: H
<latexit sha1_base64="0Gjo8vEcdJZ9vZO6/JjGLoUtAzs="></latexit>

Hamiltonian: �H

<latexit sha1_base64="sEVfzKfyzzJFMWguo+jyPK/khvI=">AAACzHichVFLT8JAEB7qC/CFevTSSEw8kUJa5Eh8xYsGgzwSJKQtCzb0lXYhQcLVm1f9bfpbPPjtWkw8ELbZzuw333w7s2OFrhNzTftMKWvrG5tb6Ux2e2d3bz93cNiMg3Fks4YduEHUtsyYuY7PGtzhLmuHETM9y2Uta3Qp4q0Ji2In8B/5NGRdzxz6zsCxTQ6oXu9pvVxeK1QMXS9rqlbQ5BKOYZSKhlpMkDwlqxbkvuiJ+hSQTWPyiJFPHL5LJsX4OlQkjUJgXZoBi+A5Ms5oTlnkjsFiYJhAR/gPceokqI+z0Ixlto1bXOwImSqdYt9IRQtscSuDH8N+Y79IbLj0hplUFhVOYS0oZqTiHXBOz2CsyvQS5qKW1ZmiK04DqshuHNQXSkT0af/pXCESARvJiErXkjmEhiXPE7yAD9tABeKVFwqq7LgPa0rLpIqfKJrQi2DF66MejHkxS3W50ywViuWC/qDnqxfJwNN0TCd0hqmeU5VuqYY6bFT3Ru/0odwrXJkp81+qkkpyjujfUl5/AMQIj70=</latexit>

S0

<latexit sha1_base64="Y4tkbEPztQOavwnD+PPdjWanN5I=">AAACzHichVFNT8JAEB3qF+AX6tFLIzHx1LSEIkeiYrxoMMpHgoS0ZcGG0jbtQoKEqzev+tv0t3jw7VpMPBC22c7smzdvZ3bs0HNjruufKWVtfWNzK53Jbu/s7u3nDg4bcTCOHFZ3Ai+IWrYVM8/1WZ273GOtMGLWyPZY0x5einhzwqLYDfxHPg1ZZ2QNfLfvOhYH9FDt6t1cXtfKZrFY0lVd0+USjmkWDFM1EiRPyaoFuS96oh4F5NCYRsTIJw7fI4tifG0ySKcQWIdmwCJ4rowzmlMWuWOwGBgW0CH+A5zaCerjLDRjme3gFg87QqZKp9jXUtEGW9zK4Mew39gvEhssvWEmlUWFU1gbihmpeAuc0zMYqzJHCXNRy+pM0RWnPpVlNy7qCyUi+nT+dK4QiYANZUSlqmQOoGHL8wQv4MPWUYF45YWCKjvuwVrSMqniJ4oW9CJY8fqoB2NezFJd7jQKmlHSivfFfOUiGXiajumEzjDVc6rQDdVQh4Pq3uidPpQ7hSszZf5LVVJJzhH9W8rrD6JYj68=</latexit>

E0

<latexit sha1_base64="ZrzvDrlAPQdxciutLR9Krs6MSzE="></latexit>

T =

✓
dS

dE

◆�1

<latexit sha1_base64="OBQDM2OTgRQx/I9NV33xbNnkaqQ=">AAAC13ichVFLS8NAEJ7GV1tfVY9egkXwVBIp6rGoFS9CBfsQWyVJtzE0LzbbYi3Fm3j15lX/lf4WD35ZU0GLdMNmZr/55tuZHTN0nUho2ntKmZmdm19IZ7KLS8srq7m19VoU9LjFqlbgBrxhGhFzHZ9VhSNc1gg5MzzTZXWzexTH633GIyfwL8QgZC3PsH2n41iGAHTdFOxODMu+4EE4GN3k8lpBk0uddPTEyVOyKkHug5rUpoAs6pFHjHwS8F0yKMJ3RTppFAJr0RAYh+fIOKMRZZHbA4uBYQDt4m/jdJWgPs6xZiSzLdziYnNkqrSNfSIVTbDjWxn8CPYT+15i9r83DKVyXOEA1oRiRiqeARd0C8a0TC9hjmuZnhl3JahDB7IbB/WFEon7tH50jhHhwLoyolJZMm1omPLcxwv4sFVUEL/yWEGVHbdhDWmZVPETRQN6HDZ+fdSDMet/hzrp1HYL+l6heF7Mlw6Tgadpk7ZoB1PdpxKdUgV1WFB+oVd6Uy6VB+VRefqmKqkkZ4N+LeX5C37glSY=</latexit> E
nt
ro
py

<latexit sha1_base64="VZC8vOA9kx8lheooxXRbW6W5PYU=">AAAC1nichVFNS8NAEH3Gz/pZ9eilWARPJRFRj0WteBEqWC1okSSuMTRfbrZiLfUmXr151Z+lv8WDL2sUVMQNm5l98+btzI6TBH6qTPNlwBgcGh4ZHSuMT0xOTc8UZ+cO07gjXdFw4yCWTcdOReBHoqF8FYhmIoUdOoE4ctpbWfzoSsjUj6MD1U1EK7S9yD/3XVsRap0oca16tUhIr9s/LZbNiqlX6bdj5U4Z+arHxVec4AwxXHQQQiCCoh/ARsrvGBZMJMRa6BGT9HwdF+hjnLkdsgQZNtE2/x5Pxzka8Zxppjrb5S0Bt2RmCUvcO1rRITu7VdBPad+4bzTm/XlDTytnFXZpHSoWtOIecYULMv7LDHPmZy3/Z2ZdKZxjQ3fjs75EI1mf7pfONiOSWFtHSqhppkcNR5+v+AIRbYMVZK/8qVDSHZ/R2toKrRLlijb1JG32+qyHY7Z+DvW3c7hSsdYqq/ur5epmPvAxLGARy5zqOqrYRZ11uLjEI57wbDSNW+POuP+gGgN5zjy+LePhHQ9ZlJU=</latexit>

Energy

<latexit sha1_base64="sEVfzKfyzzJFMWguo+jyPK/khvI=">AAACzHichVFLT8JAEB7qC/CFevTSSEw8kUJa5Eh8xYsGgzwSJKQtCzb0lXYhQcLVm1f9bfpbPPjtWkw8ELbZzuw333w7s2OFrhNzTftMKWvrG5tb6Ux2e2d3bz93cNiMg3Fks4YduEHUtsyYuY7PGtzhLmuHETM9y2Uta3Qp4q0Ji2In8B/5NGRdzxz6zsCxTQ6oXu9pvVxeK1QMXS9rqlbQ5BKOYZSKhlpMkDwlqxbkvuiJ+hSQTWPyiJFPHL5LJsX4OlQkjUJgXZoBi+A5Ms5oTlnkjsFiYJhAR/gPceokqI+z0Ixlto1bXOwImSqdYt9IRQtscSuDH8N+Y79IbLj0hplUFhVOYS0oZqTiHXBOz2CsyvQS5qKW1ZmiK04DqshuHNQXSkT0af/pXCESARvJiErXkjmEhiXPE7yAD9tABeKVFwqq7LgPa0rLpIqfKJrQi2DF66MejHkxS3W50ywViuWC/qDnqxfJwNN0TCd0hqmeU5VuqYY6bFT3Ru/0odwrXJkp81+qkkpyjujfUl5/AMQIj70=</latexit>

S0

<latexit sha1_base64="lGovhXpkYo1Juaf8GlVuq+ODEac="></latexit>

�E0

<latexit sha1_base64="OBQDM2OTgRQx/I9NV33xbNnkaqQ=">AAAC13ichVFLS8NAEJ7GV1tfVY9egkXwVBIp6rGoFS9CBfsQWyVJtzE0LzbbYi3Fm3j15lX/lf4WD35ZU0GLdMNmZr/55tuZHTN0nUho2ntKmZmdm19IZ7KLS8srq7m19VoU9LjFqlbgBrxhGhFzHZ9VhSNc1gg5MzzTZXWzexTH633GIyfwL8QgZC3PsH2n41iGAHTdFOxODMu+4EE4GN3k8lpBk0uddPTEyVOyKkHug5rUpoAs6pFHjHwS8F0yKMJ3RTppFAJr0RAYh+fIOKMRZZHbA4uBYQDt4m/jdJWgPs6xZiSzLdziYnNkqrSNfSIVTbDjWxn8CPYT+15i9r83DKVyXOEA1oRiRiqeARd0C8a0TC9hjmuZnhl3JahDB7IbB/WFEon7tH50jhHhwLoyolJZMm1omPLcxwv4sFVUEL/yWEGVHbdhDWmZVPETRQN6HDZ+fdSDMet/hzrp1HYL+l6heF7Mlw6Tgadpk7ZoB1PdpxKdUgV1WFB+oVd6Uy6VB+VRefqmKqkkZ4N+LeX5C37glSY=</latexit> E
nt
ro
py

<latexit sha1_base64="VZC8vOA9kx8lheooxXRbW6W5PYU="></latexit>

Energy

<latexit sha1_base64="jIPmEeEZZc+ArNamnbijh3rkkuE="></latexit>

�T

<latexit sha1_base64="HYEI8PRzOuEbK1X7fBqPPQkQO4o="></latexit>

Ef

<latexit sha1_base64="+ThVLzH8jDaot+oQff9Fk7HGRjo="></latexit>
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Figure 1.1: An illustration of conformal cooling. a) Rescaling the HamiltonianH results in an equivalent change in tem‐
perature. Spatially modulating the magnitude of the Hamiltonian fromH to λH (0 < λ < 1) in a subsystem cre‐
ates a temperature gradient from T to λT. After equilibration the entire system will be left at some final temperature
Tf, therefore lowering the entropy in the strongly interacting subsystem on the left. b) Rydberg atoms in tweezer ar‐
rays are naturally amenable to conformal cooling due to the spatial control of optical tweezers and therefore the der
Waals‐interactions, which are proportional toR−6 with the interatomic distanceR. As later discussions will show, this
platform requires the spatial modulation of laser fields (shown as black waves). We note that this figure was inspired by
Zaletel et al..

Conservation of energy determines the final temperature Tf. In a canonical ensemble the energy-

temperature relation is given by

E(T) =
1
Z
Tr
[
H exp

(
−H

T

)]
, (1.3)

whereZ = Tr [exp (−H/T)]. For sufficiently small system sizes this can be obtained from the

full spectrum ofH. Given two subsystems S of sizeNS and B of sizeNB with HamiltoniansHS and
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HB = λHS, we can compare the initial energy and the energy after equilibration

(NS + λNB)ES(Ti) = NSES(Tf) + λNBES
(
Tf
λ

)
.

ES(T) is the energy-temperature relation in S and Ti is the initial temperature in the system. Note

that the energy-temperature relation of B is related to ES by

EB(T) = λES
(
T
λ

)

which follows directly from Eq. (1.3). In general we consider systems on a discrete lattice with

smooth deformations λi ∈ [0, 1]. In this case we use

N∑
i=1

λiES(Ti) =

N∑
i=1

λiES
(
Tf
λi

)
, (1.4)

to determine the final temperature given Ti.

Conformal cooling makes two key assumptions: First, that the system and bath will equilibrate

if left in contact for long enough. The eigenstate thermalization hypothesis (ETH) justifies this

assumption for nonintegrable models. While discussing the full extent of quantum thermalization

goes beyond the scope of this thesis, interested readers find a short review of thermalization in close

quantum systems with a focus on ETH and integrability in App. B. Second, it relies on the ability

to spatially modulate the Hamiltonian. While there are multiple experimental platforms that fulfill

these two requirements, here we choose to focus on Rydberg atoms trapped in tweezer arrays. In

the following section we introduce the Hamiltonian of this platform and discuss why it is a natural

candidate for conformal cooling.
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Rydberg Atom Tweezer Arrays

Developed in the context of optical dipole trapping, optical tweezers are laser beams with widths on

the order of a micrometer. This method was originally employed in biology to capture and study

single cells, bacteria and large molecules3. A key advantage of this technology is its spatial control-

lability. A single laser beam can be split to create an array of optical tweezers that can be spatially

arranged into almost any geometry in 1D and 2D. The trapping of single neutral atoms has sparked

interest in the quantummany-body community for the purpose of quantum simulation.

Atoms with a highly excited electron in a Rydberg state |r⟩with principal quantum number

n ≫ 1 are also calledRydberg atoms and have a large dipole moment because of the large distance

between the nucleus and the electron which scales as∝ n2 94. In contrast to |r⟩, the electronic

ground state |g⟩with n ∼ 1 has a negligible dipole moment (on the order of 10−3 times smaller

than for the Rydberg state4). This is important because the atoms interact via dipole-dipole interac-

tions with aR−3 dependence on the interatomic distanceR. Due to the disparity in dipole moment,

interactions involving the electronic ground state are insignificant.

However, two atoms in the same Rydberg state experience a strong interaction that is commonly

referred to asRydberg blockade. While dipole-dipole interactions turn out to be highly offreso-

nant94, van der Waals interactions with aR−6 dependence on the interatomic distanceR are the

dominant contribution. This corresponds to a two-photon process: First, one atom emits a pho-

ton that the other one absorbs. Then that process is reversed, returning the population back to its

original state. In mathematical terms we write the interaction between two atoms separated by the

distanceR as

Vint =
C
R6 n̂1 ⊗ n̂2. (1.5)

Here we introduce the projector into the Rydberg state n̂i = |ri⟩⟨ri| (i=1,2) and the van der
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Waals coefficient C ∝ n11 which strongly depends on the principal quantum number94. ⊗ denotes

the tensor product. To induce these interactions, the atoms can be coherently excited from |g⟩ to

|r⟩ by a near-resonant laser field with Rabi frequency Ω > 0 and detuning Δ ∈ R. The resulting

Hamiltonian ofNRydberg atoms in a tweezer array reads

H =
∑

1≤i<j≤N
Vij n̂i ⊗ n̂j +

N∑
i=1

(
Ω
2

σ̂xi − Δ n̂i
)
, (1.6)

where σ̂x = |g⟩⟨r| + |r⟩⟨g| is a Pauli operator corresponding to a Rabi drive andVij = C/(r6ij)

the interaction between Rydberg atoms—rij is the distance between sites i and j. We note that any

distance is given in units of the characteristic lattice spacing a.

It is useful to define the Rydberg blockade radius,Rb, such that C = ΩR6
b. The name originates

from the repulsive interactionVij between atoms in the Rydberg state. Given two atoms with one in

the Rydberg state and the other in the electronic ground state, it is highly energetically unfavorable

to excite the second atom at the same time if they are separated by less thanRb—thus one atom is

effectively blocking the other from being in the Rydberg state.

As a central goal of this thesis is to prepare low-entropy many-body states, we introduce the phase

diagram of the Rydberg atom array Hamiltonian on a one dimensional lattice with regular inter-

atomic spacing a. ForRb < 1, the interactions are sufficiently weak such that the atoms behave

practically independently in the ground state, resulting in a disordered phase. ForRb > 1 we find

that the disordered phase persists at large negative detuning due to atoms in the Rydberg state be-

ing energetically unfavorable. However as Δ is tuned to positive values, the Rydberg state becomes

energetically favorable competing with the cost of the repulsive van der Waals interaction between

neighboring sites. For Δ ≳ Ω, this results in an ordered phase with two degenerate ground states

alternating between |g⟩ and |r⟩—therefore breaking Z2 translation symmetry. This is analogous

to antiferromagnetic order in quantummagnetism and was first discovered by Bernien et al.. The
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Figure 1.2: Ground state phase diagram of the one‐dimensional Rydberg atom tweezer array. The relevant parameters
are the blockade radiusRb in units of the lattice spacing a and the ratio between the laser detuning and the Rabi fre‐
quency, Δ/Ω. At Δ/Ω ≤ 0 the ground state is paramagnetic resulting in a disordered phase. As Δ/Ω is increased
forRb > 1, ordered phases arise that break Zn translation symmetry—this is illustrated for theZ2 and Z3 phases. The
blue pentagon and orange square correspond to the parameter points that are subject to our investigation: the critical
point at Δ/Ω = 1 and the Z2 phase at Δ/Ω = 4 forRB = 1.5. For more information, we refer to the main body.

phase transition between the ordered and disordered phases falls into the Ising universality class,

which is described by a conformal field theory of central charge c = 1
2—similar to the critical point

of the transverse-field Ising model68.

AsRb is tuned to larger values, the blockade radius encompasses multiple lattice sites and ordered

phases emerge with a unit cell of n sites of which only one is in the Rydberg state. These phases

haveZn order and break Zn translational symmetry. The ground state is denoted |Zn⟩ and is n-fold

degenerate given by n possible sites for the Rydberg excitation in the unit cell. An illustration of the

phase diagram is given in Fig. 1.2.

The system also has a natural mapping to a spin- 12 Ising model by identifying n̂ = (σ̂z + I2)/2

with the Pauli operator σ̂z = |r⟩⟨r| − |g⟩⟨g|, where I2 is the identity matrix of a two-level system,

thereby mapping Eq. (1.6) to a mixed-field Ising chain which has been extensively studied in the
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literature (cf. App. C). For finite transverse and longitudinal fields, this model is nonintegrable,

i.e., it does not have an extensive number of quasi-local conserved quantities, and is expected to

thermalize according to the ETH. This means that the Rydberg atom array naturally satisfies the

first key assumption that we made for conformal cooling.

Recalling the second key assumption—the ability to spatially modulate the Hamiltonian, we go

back to Eq. (1.6). We can see how to spatially modulate the magnitude of the interaction Hamilto-

nian in the limit of nearest-neighbor interactions (Vij = 0 for |i− j| > 2). Let ri,i+1 be the distance

between sites i and its nearest neighbor i + 1. Then, we find that rescaling the interaction term by λ

can be achieved by changing the interatomic separation from ri,i+1 to r′i,i+1 = ri,i+1/(λ−
1
6 ):

λ
C

r6i,i+1
=

C
(ri,i+1/λ−

1
6 )6

=
C

r′6i,i+1
. (1.7)

This is also where conformal cooling gets its name: the interaction is spatially modulated by adjust-

ing the distance between the atoms, which trivially corresponds to a conformal transformation in

1D systems.

In addition, the single-site terms corresponding to the laser fields also have to be rescaled appro-

priately, e.g., by applying a spatially varying light shift on the transition between |g⟩ and |r⟩. There

are also experimental proposals for single-site addressing using individual laser beams87,81, however,

this is not scalable.

Both of these aspects are achievable in near-term experimental platforms. In fact the precise real-

time control over the atomic positions is a distinguishing feature of tweezer arrays over alternative

platforms5,29. This is in large achieved using acousto-optical deflectors (AOD) to dynamically

change the laser potentials of the atomic traps29. Groups around the world are also exploring op-

tions for single-site resolved laser fields using AODs11. Fig. 1.1b) illustrates a proposal for confor-

mal cooling in Rydberg atom arrays.
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In conclusion the Rydberg atom array in one-dimensional systems fulfills the two key ingredients

for conformal cooling: the ability to spatially modulate the magnitude of the Hamiltonian and

dynamics that tend towards thermal equilibrium.

1.2 Conformal Cooling Quenches in the Rydberg Phase Diagram

In the following section, we explore conformal cooling quenches as a means of preparing low-

entropy states starting from disordered states. Recalling our aim of probing ordered ground states,

we are primarily interested in the Z2 phase of Fig. 1.2. We will discuss the efficacy of our approach

and show that the critical point of the model in Eq. (1.6) is better suited for conformal cooling. By

quenching close to the critical point, we look for the emergence of criticality. We propose a simple

scheme to optimize the cooling procedure and discover an effect that we call overcooling, wherein

the amount of energy removed on a short time-scale highly exceeds the equilibrium expectation.

Finally we focus on scaling our approach—in App. D we probe the thermodynamic limit for the

exactly solvable transverse-field Ising model at its critical point which shares a common low-energy

description with Eq. (1.6).

Our procedure works as follows: We initialize the system in the uniform product state |ψ(0)⟩ =

⊗N
i=1|ϑ, ϕi⟩which can be done efficiently4. Afterwards, we perform a quench by drastically chang-

ing the Hamiltonian and evolve the system using the spatially modulated Hamiltonian

H =
N−1∑
i=1

λi J n̂i ⊗ n̂i+1 +
N∑
i=1

λi
(
Ω
2

σ̂xi − Δ n̂i
)
, (1.8)

where λi > 0 is the spatial modulation and we denote J ≡ C/a6 as the scale for the interaction

energy. A natural figure of merit for conformal cooling is howmuch energy is removed from the

system over the course of the quench. It is useful to define a local Hamiltonian on each site for this
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purpose. We follow the convention of Goto et al. and introduce

ĥi = H
∣∣∣
i
= λi

(
Ω
2
σ̂xi − Δn̂i

)
+

1
2
(λi J n̂i ⊗ n̂i+1 + λi−1 J n̂i−1 ⊗ n̂i) (1.9)

as the local energy density operator. In open boundary conditions, which we assume for the remain-

der of this chapter, we set n̂0 = n̂N+1 = 0. We observe that
∑N

i=1 ĥi = H as we expect. The energy

in the system is then

ES(t) =
∑
i∈S

⟨ψ(t)|ĥi|ψ(t)⟩,

where |ψ(t)⟩ = exp(−iHt)|ψ(0)⟩with the initial state |ψ(0)⟩ and i is the imaginary unit. Using Eq.

(1.3) we can convert the energy density into local temperature profiles given the energy-temperature

relation. Strictly speaking defining a microscopic temperature on a lattice is a subtle task. Here,

we simply match the energy density of the time-evolved state with a Gibbs state of the same energy

density. This is physically motivated by the ETHwhich predicts that these values should match in

equilibrium.

Lastly we give a short discussion of the initial state |ψ(0)⟩, which we take to be a uniform and

therefore uncorrelated product state. We know that it takes the form⊗N
i=1|ϑ, ϕi⟩, where

|ϑ, ϕ⟩ = cos
(
ϑ
2

)
|r⟩+ eiϕsin

(
ϑ
2

)
|g⟩

is an arbitrary state on the surface of the Bloch sphere, where ϑ is the polar angle and ϕ the azimuthal

angle. Ideally, we would like to initialize the lowest-energy uniform product state which also has the

lowest initial temperature, allowing for better cooling. We can easily compute the energy of |ψ(0)⟩
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with regard to the Hamiltonian in Eq. (1.8) parametrized by ϑ and ϕ:

E(ϑ, ϕ) = ⟨ϑ, ϕ|H|ϑ, ϕ⟩ =
N−1∑
i=1

λiJ
[
1+ cos (ϑ)

2

]2
+

N∑
i=1

λi
[
Ω
2
sin (ϑ) cos (ϕ)− Δ

1+ cos (ϑ)
2

]
.

We used the representation of |ϑ, ϕ⟩ on the Bloch sphere

⟨ϑ, ϕ|σ̂x|ϑ, ϕ⟩ = sin (ϑ) cos (ϕ)

⟨ϑ, ϕ|σ̂y|ϑ, ϕ⟩ = sin (ϑ) sin (ϕ)

⟨ϑ, ϕ|σ̂z|ϑ, ϕ⟩ = cos (ϑ) .

For Ω > 0 it becomes clear that the E(ϑ, ϕ) is minimized for ϕ = π. In the blockade limit we

assume J ≫ Δ,Ω4 and find that ϑ = πminimizes the initial energy. This means that all atoms are

initialized in their electronic ground state which can be efficiently prepared using optical pumping4,

i.e., we use |ψ(0)⟩ = ⊗N
i=1|gi⟩with ⟨ψ(0)|H|ψ(0)⟩ = 0.

Another consideration is the shape of the spatial modulation considered here. Following the pro-

posal by Zaletel et al. we choose a flat profile for the system (λi = 1) and the bath (λi = λbath). To

avoid mismatching of heat conductivities at the boundary between the two regions, it is generally

preferable to have a smooth deformation. Therefore we introduce an intermediate region, the ramp,

and interpolate linearly between the other two regions. This leaves a number of parameters that we

optimize for improved cooling: the size of the bathNB, the size of the rampNR, and the rescaling

constant in the bath λbath = mini(λi). Of course there are a plethora of alternative spatial modu-

lations to consider including parabolic36 and sinusoidal19 shapes—we note that our results do not

rely on the specific choice of spatial modulation.

As for the Hamiltonian parameters, we choose Ω = 0.5 andRb = 1.5 for all simulations in

this section, i.e., J = ΩR6
b ≈ 5.7. Any energy will be expressed in units of Ω. Fig. (1.3) shows
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Figure 1.3: Spontaneous breaking of the translationalZ2 symmetry in a one‐dimensional Rydberg atom tweezer array
of length L = 25. The plot shows the population on each site, ⟨n̂i⟩, for different Δ/Ω. As the ratio Δ/Ω is tuned to
large positive values, the ground state undergoes a phase transition: at Δ/Ω = 0 there are no Rydberg excitations;
at Δ/Ω = 4 every second site is in the excited Rydberg state. For numerical details we refer to the main text. Ω =
0.5,Rb = 1.5.

the ground state phase transition from the paramagnetic to theZ2 ordered phase and the associated

translational symmetry-breaking in a Rydberg array of size L = 25. At Δ/Ω = 4 (orange square

in Fig. 1.2), we observe clear Z2 order so we choose this parameter for investigations in the ordered

phase. The critical point is roughly given by Δ/Ω = 1 (blue pentagon in Fig. 1.2), consistent with

the literature30, and will be subject to further study in later sections.

Since we are employing matrix product state methods to study the many-body dynamics, we note

the following numerical parameters which are explained in more detail in App. A. We choose the

maximum bond dimension of the matrix product state χmax = 512 and the minimal Schmidt value

λmin = 10−10. The time step is taken to be δt = 0.05Ω−1. Fig. 1.3 shows results obtained via the

density-matrix renormalization group with maximum bond dimension χmax = 512. We assert that

the following results are converged in these parameters.
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Figure 1.4: Conformal cooling quench in the Z2 phase. a) On the left we plot the spatial modulation; on the right is the
change in energy density for every site i as a function of timeΩt. We see that energy is accumulating at the edges
of the system (black edges), but not effectively leaking into the ramp as we would expect from diffusive dynamics. b)
The average energy change in the system δεS = (NS)

−1∑
i∈S hi(t) shows a slight decrease for short times before

saturating—fast oscillations can be observed throughout the evolution. c) The half‐chain entanglement entropy SNS/2 of
the system as a function of time (see text for details). We see large, fast oscillations consistent with a) and a slow linear
increase in SNS/2. This behavior is indicative of quantum many‐body scars which were first observed in the Rydberg
blockade model by Bernien et al.. NS = 12,NR = 11,NB = 14, λbath = 0.25.

1.2.1 Z2 Phase

We begin by investigating conformal cooling quenches in theZ2 phase of the 1D Rydberg blockade

model. The goal is to find energy transfer from the system into the bath and ultimately to observe

the subsequent build-up ofZ2 correlations. Since we are dealing with a quantum phase transition,

we need to reach very low temperatures to observe this, ideally cooling below the gap of the Hamil-

tonian. Therefore, we will first investigate the general efficacy of conformal cooling using a spatial

modulation similar to the one employed by Zaletel et al. before optimizing the parameters of the

spatial modulation and then increasing the respective subsystem sizes to study the scalability of this

approach.
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In Fig. 1.4 we plot different metrics of diagnosing the dynamics of conformal cooling. First, Fig.

1.4a) shows the spatial modulation λi on the left. The right panel of Fig. 1.4a) depicts the change in

energy density

hi(t) = ⟨ĥi(t)− ĥi(0)⟩ (1.10)

in time. We note that ⟨ĥi(0)⟩ = 0 ∀ i, i.e., any change in the energy coincidences with the energy.

At early times, the dynamics in the energy density are dominated by the edges of the system: the

atom at each edge absorbs energy which is compensated by the center of the system. The ramp also

shows an increase in energy—however, only on a short time scale, as this energy becomes localized in

the ramp, bouncing between its two boundaries which are shown as black edges in Fig. 1.4a). This

is surprising as the model is nonintegrable for this particular choice of Hamiltonian parameters,

meaning it is generally expected to exhibit diffusive energy transport at high temperatures41—in fact

the spin- 12 mapping of this Hamiltonian shows this property32.

At the same time, there is also no meaningful energy exchange with the bath. One factor is the

increased time scale of dynamics due to the rescaled magnitude of the bath: if we decouple the bath,

its dynamics will happen slower than in the decoupled system, exactly by a factor of λ−1
bath = 4. We

need to take this into account as this will impact the time scales for local thermalization of the bath

and hence the time scale for global thermalization. A similar phenomenon was observed by Zaletel

et al..

In Fig. 1.4b) we investigate the change in the energy of the system which we introduced as the

figure of merit for conformal cooling. We denote the average energy density in the system as εS =

ES/NS with δεS being the relative change in this quantity. While it decreases at early times, it sat-

urates quickly, therefore confirming the lack of energy diffusion into the ramp. The amount of

cooling is also significantly less than thermodynamic expectations from Eq. (1.4). Initially the sys-
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tem has an approximate temperature of Ti = 20.2 in units of Ω. This is obtained from Eq. (1.3)

via exact diagonalization on a chain of length L = 12 with open boundary conditions where we as-

serted the convergence in the chain length. In combination with the spatial modulation in Fig. 1.4a)

we would expect a final temperature Tf = 15.2 from Eq. (1.4) corresponding to εS = −0.2. This is

more than an order of magnitude greater than the observed cooling.

Fig. 1.4 provides an explanation for this observation. The half-chain entanglement entropy of the

system

S = −Tr
(
ρhclog(ρhc)

)
,

where ρhc is the reduced state of one half of the system, exhibits an oscillatory behavior with a very

slow, linear increase up to time scales of Ωt = 200. This is a stark contrast to ergodic behavior,

where we expect to see a sharp linear increase until saturation at a volume-law state, for which the

entanglement entropy scales linearly in the system size32. Our dynamics on the other hand are in

line with observations for quantummany-body scars which have been discovered in the Rydberg

blockade model4. These are states which retain high support within a small subspace of the overall

Hilbert space as the state is evolved for long times27. This leads to ergodicity breaking and hence

nonthermal dynamics. Quantummany-body scar states have been a topic of high interest recently

in the field of quantum thermalization50,27,65,76,31. The recent discovery that the initial state consid-

ered here, |ψ(0)⟩ =
⊗

i |g⟩, is in fact a scar state in the Z2 phase, is important to our analysis12,53,41.

An intuitive argument for the ergodicity breaking is the lack of resonant transitions of |ψ(0)⟩ via

state flips |g⟩ → |e⟩, which are facilitated by the Rabi drive, therefore effectively limiting the state

space that the initial state explores at short to intermediate times. In fact, for Δ ≫ Ω the Hilbert

space factors into dynamically disconnected subsectors with the same number of Rydberg atoms in

the chain33. Due to this nonthermal behavior, the thermodynamic arguments break down as the
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state is not expected to thermalize on an accessible time scale which fits into our observations in Fig.

1.4.

This might suggest that one should just start with a different initial state at higher energy, there-

fore circumventing the issues of many-body scarring. It turns out that the many-body scars also have

a significant impact on the infinite-temperature energy transport as found by Ljubotina et al., re-

sulting in superdiffusive instead of the expected diffusive energy transport. In combination with

the factorization of the Hilbert space into dynamically disconnected subsectors, this suggests that

generic states do not exhibit ergodic dynamics until long time scales. As Zaletel et al. emphasize,

rapid local thermalization is an essential ingredient for conformal cooling based on macroscopic gra-

dients in the energy density. Failure to satisfy this condition breaks the thermodynamics arguments

leading to unexpected behavior. Intriguingly recent investigations12,53,88 discovered connections

between the observed quantummany-body scar states and the critical point of Eq. (1.6). They find

that quenching scar states with the (near-)critical Hamiltonian leads to the restoration of thermaliz-

ing behavior. In particular this includes the initial state we consider, leading us to probe conformal

cooling near the critical point.

1.2.2 Near criticality

Criticality plays a central role in the field of statistical physics where it describes the transition be-

tween two phases of matter, e.g., from a paramagnetic to an antiferromagnetic phase as we consider.

This critical behavior is generally characterized by universality classes, that seek to uniquely identify

certain scaling relations as a system approaches criticality at low energies. This is achieved via the

renormalization group85 and predicts for example how the correlation length ξ scales with respect to
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a control parameter τ

ξ ∝ |τ|−ν. (1.11)

τ is used to tune between the different phases; examples include the normalized temperature (T −

Tc)/Tc or in our case the normalized chemical potential (Δ − Δc)/Δc where Tc and Δc are the

corresponding critical values. ν is a critical exponent and plays an important role as the correlation

length can be accessed via correlation functions of the form

⟨ÔiÔj⟩ − ⟨Ôi⟩⟨Ôj⟩ ∝ exp(−|i− j|
ξ

)

for some local operator Ôk acting only on site k. Critical exponents correspond to the scaling of dif-

ferent properties, e.g., the order parameter or specific heat, and can often be related to one another.

Together a set of critical exponents identifies a given universality class—for instance, ν = 1 in the 2D

Ising universality class*. The study of universality classes is an important aspect of statistical physics

because it can uncover fundamental connections between different physical models. A similar treat-

ment also extends to the dynamics of the model amplifying the significance of critical exponents

beyond low-energy physics23. While Rydberg atom tweezer arrays have previously been used to per-

form analog quantum simulation of dynamical critical phenomena in one- and two-dimensional

systems30,14, preparing (near-)critical ground states still remains an elusive challenge due to the

vanishing energy gap. Here, we explore conformal cooling quenches near the critical point of the

Rydberg blockade model as a possible candidate to study critical phenomena at low temperatures.

For this purpose we choose Δ/Ω = 1 which is close to the phase transition in Fig.1.3. We note that

similar ideas were suggested in the context of spatially inhomogeneous quenches of conformal field

theories20.
*We note that ν = 1 is not unique to this universality class.

22



We repeat the same strategy as in Sec. 1.2.1: we evolve the state |ψ(0)⟩ =
⊗

i |g⟩ under the

Hamiltonian in Eq. (1.8) tuned near criticality for the same spatial deformation as in Fig. 1.4. We

observe the breakdown of quantummany-body scarring as the half-chain entanglement entropy sat-

urates in Fig. 1.5c); therefore we would expect thermodynamic arguments to hold. The energy den-

sity dynamics in Fig. 1.5a) show clear energy transport across the system-ramp boundary. Energy is

transferred from the system into the ramp, therefore cooling the system and heating the ramp. In-

terestingly, the lost energy spreads throughout the system seemingly ballistically without dispersion

as indicated by a blue wave packet arising at Ωt = 50. An interesting feature is the dispersion of en-

ergy in the ramp starting from the system-ramp boundary at Ωt ≈ 100 which may indicate diffusive

behavior at long times (gray dashed line in Fig. 1.5a)).

Fig. 1.5b) underlines the observation that energy is leaving the system and with δεS saturating

at−0.02 which is roughly a fourfold increase over the cooling in the Z2 phase. However from Eq.

(1.4) we would expect to reach εS = −0.24 and a temperature decrease from Ti = 5.9 to Tf = 3.7

which is much less than the observed minimum temperature of 5.6. This further emphasizes the

need for optimizing the amount of cooling, especially given that the ground state has energy density

εS = −0.61.

Despite the energy transport into the ramp, the bath is not absorbing energy effectively at the

time scales that are accessible. Recall that energy transport is only possible through resonant pro-

cesses, e.g., an atom only absorbs resonant light. In a many-body case there are an abundance of

possible transitions. Here a useful figure of merit for energy transport is the energy variance of the

subsystem since it reflects the width of its energy distribution. A system with a large energy variance

will be spread out over many energy eigenstates allowing for more possible transitions than a system

with small energy variance. Here we consider the energy variance which is given by

Δ(Hbath) =
√

⟨H2
bath⟩ − ⟨Hbath⟩2,
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Figure 1.5: Conformal cooling quench near the critical point. a) The left panel depicts the Hamiltonian deformation with
the spatially resolved dynamics of the change in energy density to the right. At early times the system emits energy
into the ramp which is dispersed throughout; a lack of diffusion into the bath persists however. While early‐time be‐
havior exhibits coherent oscillations in the dynamics, there is seemingly an onset of diffusion at late timesΩt ≈ 100
(gray dashed line). b) The system shows a clear decrease in its average energy up toΩt = 100 before saturating at
δεS ≈ −0.02—a substantial improvement over quenches in theZ2 phase (cf. Fig. 1.4). c) The half‐chain entanglement
entropy indicates thermalizing behavior with a sharp linear increase in time. NS = 12,NR = 11,NB = 14, λbath =
0.25.

whereHbath =
∑

i∈B ĥi. Trivially, we would expect it to be reduced by λbath in comparison to

the system at an equal length. This means that the bath cannot effectively absorb energy from the

system for small λbath.

Another perspective to consider are strong zero modes which are conserved operators localized

at the edge of a system. Recently, work on coupled transverse-field Ising chains differing only in

magnitude found these long-lived states localized at the boundary between the two chains51. Olund

et al. attribute this to a lack of resonant processes at this boundary due to the different magnitudes

of the Hamiltonians. This localized mode may hinder energy transport across the boundary and

therefore lead to very long time scales for cooling. We conclude that a flat bath is therefore unlikely

to contribute to the cooling.
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Now that we have an understanding that energy transport between the system and ramp is pos-

sible close to the critical point, our next step is to improve the amount of cooling. For this purpose,

we optimize over the parameters of the spatial deformation for a given system. Here we consider a

system of sizeNS = 8 coupled to bath-ramp structures at each end. This contrasts the end-to-end

configuration that we employed so far. One advantage of coupling to a bath at each end is that cool-

ing will generally happen at half the time scale. Following the Heisenberg equation of motion, the

rate of change of the system’s energy is given by

∂tHS ∝ [H,HS] =
(
[ĥiL−1, ĥiL ] + [ĥiR , ĥiR−1]

)

where iL and iR mark the left and right ends of the system andHS =
∑

i∈S ĥi. For an end-to-

end configuration only one of the two terms would appear. As we seek to outperform current state

preparation approaches, the time scale for preparing the final state is naturally a consideration which

is why we choose to work with this setup.

Besides the system size, we also fix the size of the combined ramp-bath structure on each side to

(NR+NB)/2 = 8 with a total length ofNS+NR+NB = 24. We adjust the length of the rampNR,

and the lowest rescaling factor, λbath, in Fig. 1.6. As a figure of merit we again consider the change

of the energy in the system. To obtain the maximal amount of cooling, we simply take the minimal

value of εS after we let the system evolve up to Ωt ≈ 250. At these times we observe that the system

reaches a minimum or stationary value.

In Fig. 1.6 we find that the cooling is optimal for long and shallow ramps. First of all, these re-

sults confirm our previous discussion that flat baths do not effectively cool the system due to poor

energy transport properties and the emergence of a long-lived mode at the bath-ramp boundary that

hinders transport. Fig. 1.6 shows the optimal cooling forNR = 16 and λbath = 0.75 with the mini-

mal energy density εS = −0.17, a substantial improvement over the previous case and significantly
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Figure 1.6: Optimization of cooling near the critical point via tuning of the spatial deformation parametersNR and
λbath. The minimum energy density in the system, εS, shows a clear tendency towards optimal cooling for long, shallow
ramps. By focusing on this parameter region we identifyNR = 16 and λbath = 0.75 as the optimal parameters with
min(εS) ≈ −0.17 which is an order of magnitude improvement over Fig. 1.5b). NS = 8.

closer to the ground state at εS = −0.61.

Fig. 1.7 shows the dynamics for the optimal parameters identified in Fig. 1.6. We observe rapid

energy transport out of the system into the ramp up to Ωt = 180 (cf. Fig. 1.7a)). The system emits

energy into the ramp which is ultimately accumulating at the outer edges of the ramp. This is ex-

pected from heat diffusion, however, the dynamics at later times strongly deviate from diffusive

behavior as the system reabsorbs most of the energy lost. This indicates transient energy transport

that differs from the expected diffusive behavior. As previously mentioned, the superdiffusive en-

ergy transport in the closely related PXP model on the time scales, that we investigate41, may be

responsible for our observations. While Ljubotina et al. study infinite temperature transport, we
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consider a specific initial state at finite energy which can also exhibit different dynamics behavior

constrained by approximate conservation laws or dynamic constraints. This may also suggest a close

connection to integrability.

The change in the average energy density of the system shows an interesting time dependence in

Fig. 1.7b): from numerical inspection we find δεS ∝ −t2 up to Ωt = 180, i.e., while the system

is releasing energy into the ramp. In fact this t2-scaling occurs rather generically for shallow ramps

in Fig. 1.6 suggesting a more general behavior. Perturbation theory suggests this scaling for short

times—it is surprising that it persists up to such late times. During our discussion in Ch. 3 we will

propose a potential toy model to explain this behavior.

Intriguingly, among the many differences between this case and the previously discussed scenar-

ios, there is one particularly interesting feature: the cooling outperforms the equilibrium expecta-

tion (cf. Eq 1.4) as we see in Fig. 1.7b). The minimum energy density corresponds to a temperature

of Tmin = 4.3, which is better than the expected cooling to Tf = 5.3. One striking feature of

Fig. 1.7a) is the cooling of the system’s two central sites to a temperature of T = 2.4. We find

this overcooling to be a phenomenon worthy of deeper investigation because it has several interest-

ing implications: First, it shows that we can surpass thermodynamic expectations on intermediate

time scales. This suggests a cooling protocol where the system is decoupled at the time when the

minimum in εS is reached; here this would be Ωt ≈ 180. Afterwards the system would evolve on

its own to eventually equilibrate. This time scale may be attainable on near-term experiments: as-

suming a Rabi frequency of Ω = 2π × 5.5MHz, we find that cooling requires evolution up to

t = 180Ω−1 ≈ 5.2 µs which is reasonable for current experimental capabilities15,66. The second

advantage of overcooling is its time scale which is inherently fast than thermalization. Conformal

cooling requires that the system thermalizes on a global scale, a process that can take exponentially

long in the system size40,9. For instance, the given model shows thermalization on time scales be-

yond the reach of our numerical investigation for the system sizes considered here. Therefore this

27



0 1
∏i

0

5

10

15

20

Si
te

i

0 100 200
Time ≠t

Ramp

System

Ramp

0 200
Time ≠t

°0.15

°0.10

°0.05

0.00

±"
S

°0.2 0.0 0.2
Energy density hi(t)

<latexit sha1_base64="lMRE+jgWDIgpIPvLUeJ6FuhoXv8="></latexit>

a)
<latexit sha1_base64="RQj/rfTEGitJusiUKGqA2eZg1uA="></latexit>

b)

Figure 1.7: Dynamics of the optimal conformal cooling quench from Fig. 1.6. a) The spatial modulation on the left
corresponds to a long and shallow ramp. Energy transport is evident in the energy density dynamics on the right.
Cooling spreads from the edges of the system into its bulk while the outer edges of the ramp accumulate energy.
This behavior shares similarities with heat diffusion with a spatially dependent heat conductivity as shown on the
left. b) The system’s energy density decreases sharply up toΩt = 180 before rebounding back to its initial value.
The minimum corresponds to the reported value of min(εS) = −0.17. The dashed line shows the thermody‐
namic expectation derived from Eq. (1.4); the observed cooling is more than a factor 2 greater than this value.
NS = 8,NR = 16,NB = 0, λbath = 0.75.

transient overcooling effect may lead to faster state preparation. Ultimately this effect needs a more

detailed understanding, especially in terms of scalability which we will investigate in the following

section.

1.2.3 Scaling of overcooling

One interesting prospect of overcooling is how the amount of cooling depends on the system pa-

rameters, i.e., how does it impact the cooling in the thermodynamic limit. For this purpose, we

again turn to the end-to-end configuration of the spatial modulation, which makes reaching large

system and ramp sizes more viable. We work with long and shallow ramps which generically exhib-

ited the overcooling and increase the system and the ramp size, while keeping the slope the ramp
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Figure 1.8: Scaling of overcooling with the system sizeNS with a fixed ramp. a) Over a range of system sizes the average
energy density of the system εS shows a minimum occurring aroundΩt ≈ 75. AsNS is increased a plateau arises
before the system ultimately absorbs energy again. The inset shows the corresponding spatial modulations, where
λi = 1 for i = 0, . . . ,NS − 1. b) The minimum of εS in time shows a monotonic increase proportional toN−0.9

S ,
where the scaling was extracted from a fit (dashed line). Effectively the ramp can only absorb a finite amount of energy
from the system—further increasing the system will therefore not result in improved cooling. NR = 8, α = 0.125.

fixed. There is of course one caveat with this approach: the linear ramp cannot be extrapolated to

the thermodynamic limit (NR → ∞) while keeping the constraint 0 < λi < 1; instead it will

eventually reach negative values and diverge, a feature that cannot be obtained in our experimental

proposal. However, we can still see the scaling without this limitation for sufficiently shallow ramps.

We expect the scaling to be generic for long, shallow ramps, depending only weakly on the slope of

the ramp. Our approach takes one case that exhibits overcooling and introduces new subsystems to

investigate how conformal cooling performs. We choose eitherNS = 8 and scaleNR, orNR = 8

and scaleNS instead, with a slope of α = (1−mini(λi))/NR = 0.125.

In Fig. 1.8a) we show the dynamics of εS as we gradually increase the system size fromNS = 6

toNS = 24. Smaller systems show a larger decrease in the average energy density, which is expected

because εS ∝ N−1
S . In fact, the early-time emission of energy should be identical across all system
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Figure 1.9: Scaling of overcooling with the ramp sizeNR at a fixed system sizeNS = 8 and ramp slope α = 0.125.
a) The average energy density in the system shows lower minima as the ramp size is increased; the inset shows the
spatial modulation where λi = 1 for i = NR, . . . ,NR + NS − 1. We observe saturation in the minimum beyond
NR = 2.5NS. b) The maximum amount of cooling, mint(εS(t)), indeed saturates for large ramps, suggesting that
overcooling can only remove a certain amount of energy.

sizes, as the Lieb-Robinson bounds suggest that it takes a finite time for energy from the additional

system to reach the system-ramp boundary. This is indeed observed as the dynamics deviate at times

Ωt > 50. While the system reabsorbs nearly the entire energy emitted shortly after reaching its min-

imal value similarly to what was observed in Figs. 1.4 and 1.7, this is not the case for larger system

where it instead saturates for a time that increases with system size—at sufficiently large times we

would expect to see the reabsorption for any system size. The plateau value roughly corresponds to

the minimum of εS in Fig. 1.8b). It shows a monotonic increase indicating that cooling vanishes in

the thermodynamic limit as one would generically expect. One way of understanding these results

is that the ramp only has a finite amount of energy it can absorb which will be saturated for some

system size.

This also demonstrates that the overcooling can be attributed in large part to long-lived quasipar-
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ticles localized at the system-ramp boundary that travel ballistically through the system. For larger

system sizes they spend a longer time in the system before leaving into the ramp. This agrees with

our observation that εS remains constant for a time that increases with the system size.

Fig. 1.9 shows the scaling of εS with the ramp size. While early-time dynamics are again similar,

we see that cooling improves for larger ramp sizes in Fig. 1.9a). For increasingly largeNR, the mini-

mum of εS saturates however, suggesting that cooling cannot be improved by further increasing the

ramp size. Fig. 1.9b) corroborates this result as maximum cooling shows no improvement beyond

NR ≈ 2.5NS. This result is in contrast with the thermodynamic prediction that cooling should

always improve as more resources for cooling, e.g., a larger ramp, are introduced.

These results suggest that overcooling is a finite size effect originating at the boundary between

the system and the ramp or open boundary conditions as observed in Fig. 1.7a). However, these ef-

fects will only lead to a constant improvement over the thermodynamic expectation at small system

sizes. Therefore it would be necessary to simultaneously increase the system and ramp size to see

overcooling vanish. This is beyond the scope of the current investigation given the requirement to

reach both large chain sizes and long run times to observe this prediction.
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2
Adiabatic Preparation of the

thermofield-double State

Studying phases of matter generally requires preparing the ground state of

a given model. However, as previously discussed it is often sufficient to reach adequately low-

entropy and low-temperature states to observe the relevant phenomena. This opens an alternative
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avenue to cooling analogue quantum simulators: adiabatic preparation of low-temperature thermal

states. We will first discuss the motivation and background behind this approach, focusing on the

feasibility in different models. Afterwards, our investigation focuses on the spin- 12 critical antiferro-

magnetic Heisenberg model. We use CFT arguments for the comparison of correlation functions of

thermal states and the ground states of coupled chains.

2.1 Background

Rydberg tweezer arrays can be used to study finite-temperature phase transitions as recently demon-

strated by Chen et al., as these platforms move towards 2D and 3D geometries, where finite-temperature

order arises more generally49. Formally, this requires studying states of the form

ρβ =
exp (−βH)

Z
, (2.1)

where β = 1/T is the inverse temperature,H is the system’s Hamiltonian, andZ = Tr [exp (−βH)]

is the partition function. TheseGibbs states are mixed states with a purity

Tr
(
ρ2β
)
< 1.

for any finite β. It turns out that ρβ is the state with the maximal entropy at a given energy. The

second law of thermodynamics predicts that systems tend towards it as they evolve in time. As per

ETH (cf. App. B) we generally expect subsystems of closed quantum systems to thermalize in non-

integrable models.

The preparation of Gibbs states is still an open question. One way of studying finite-temperature

phenomena is to quench a state at some finite energy and waiting for it to thermalize. While this

does not prepare an exact Gibbs state, expectation values of local observables approach the canonical
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ones. This section explores the prospect of adiabatic approaches. There is one fundamental problem

with this idea however: ρβ is a mixed state, i.e., not an eigenstate ofH, so the adiabatic theorem does

not apply. Instead we consider a purification of ρβ on two identical subsystems L and R. This is

known as the thermofield-double (TFD) state

|TFD⟩ = 1√
Z

∑
n

e−
βEn
2 |En,L⟩ ⊗ |E∗n,R⟩. (2.2)

{En, |En⟩}n is the set of energy eigenvalues and eigenstates ofH defined on each subsystem and the

index n iterates through the number of eigenvalues of the Hamiltonian—dL for a chain of L d-level

systems. We also define |E∗n⟩ = Θ|En⟩, where Θ is an antiunitary operator such as time-reversal.

Taking the partial trace over one of the two subsystems reveals that

ρβ,S = TrS̄ (|TFD⟩⟨TFD|) ,

where S ∈ {L,R} and S̄ is the compliment of S. Of course the purification of ρβ is not unique,

in fact there are many states similar to the TFD, but with complex phases in each term of the sum

resulting in the same reduced density matrix. In summary we can study thermal states given a TFD-

like state by discarding one half of the system and only taking expectation values within the remain-

ing half.

Interestingly the thermofield-double state is of particular importance in the context of quantum

gravity. The AdS/CFT correspondence relates gravity in the bulk of a d + 1-dimensional Anti-de

Sitter (AdS) space to conformal field theories (CFTs) on its d-dimensional boundary. Effectively

every phenomenon or measurement in one theory maps to an equivalent one in the other. It turns

out that the dual of the TFD in the CFT is a two-sided black hole in the gravity theory44. One in-

tuitive connection relates to black holes emitting thermal radiation such that they can be described
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as being in a Gibbs state—a result famously derived by Stephen Hawking25. The hypothesis of this

connection led to optimism that unresolved questions regarding black holes could be addressed by

studying the TFD state of two boundary CFTs10,28,72,45. Subsequent explorations have found that a

perturbative interaction between the two sides can lead to a traversable wormhole, i.e., information

can be transferred from one side to the other similar to quantum teleportation62,28,18.

These developments have spawned a rich literature around the protocols for preparing thermofield-

double states on digital quantum computers72,93,86 and identifying Hamiltonians whose ground

states approximate the TFD10,45. Maldacena &Qi show that the Sachdev-Ye-Kitaev model46 admits

a TFD-like ground state using exact calculations. This work also opens a pathway to a more general

investigation using conformal field theory—we will pursue this effort in our analysis. Intriguingly

Cottrell et al. find a broad class of models that exhibit TFD-like ground states: those satisfying the

eigenstate thermalization hypothesis10. The exact results of Cottrell et al. rely on specific nonlocal

interactions between the two sides, making them unrealistic for near-term implementation on ex-

perimental platforms. Cottrell et al. claim however that local interactions suffice to evoke a ground

state close to the TFD with a gap that is on the order of the temperature if the decoupled model

obeys ETH. This thesis aims to test this hypothesis and present a new perspective using CFT argu-

ments.

These results are encouraging considering that many models including the Rydberg atom array

Hamiltonian fall within these categories. Ultimately our goal is to test these hypotheses and find an

experimentally relevantHamiltonian of the form

H = H0
L +H0

R − gHLR (2.3)

that has the TFD state as its ground state such that we can use adiabatic means of preparing it. Here

H0
L,R is the Hamiltonian of each subsystem, g is the dimensionless coupling strength, andHLR
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is the coupling between the two subsystems. By experimentally relevant we require thatHLR be

spatially local in terms of operators of each chain, i.e.,

HLR =
K∑
k=1

Ôk,L ⊗ Ô∗
k,R, (2.4)

where Ôk,S (S ∈ {L,R}) are Hermitian operators with support only on S and some finite range

around site k and Ô∗
k = ΘÔkΘ−1. The coupling comprisesK operators on each side—in practice

we chooseK to be on the order of the chain size L. We choose this interaction such that its ground

state is the thermofield-double state at infinite temperature

|I⟩ = 1√
dL
∑
n

|En,L⟩ ⊗ |E∗n,R⟩,

which is a highly entangled state between the two systems. Tracing out L orR leaves a reduced den-

sity matrix that is proportional to the identity on the other system. This means that the interaction

leads to a competition in the ground state ofH: whileH0
L + H0

R favors the individual and uncor-

related ground states |E0,L⟩ ⊗ |E∗0,R⟩, the coupling seeks to maximize correlations between the two

sides.

By assuming the validity of the eigenstate thermalization hypothesis, Cottrell et al. showed that

the ground state of Eq. (2.3) is close to the TFD. A key assumption of their analysis is that the

ground state lies in the subspace of states |nLR⟩ = |En,L⟩ ⊗ |E∗n,R⟩. We denote this as the diagonal

subspace and its complement as the offdiagonal subspace. According to ETH the matrix elements

of the operators Ôk are given by

Ok
ij ≡ ⟨i|Ôk|j⟩ = δijO(Ei) +

1√
ρ(Ē)

ξO(Ē, ω)R
k
ij, (2.5)

where δij is the Kronecker delta,O(Ei) is a smooth function of the energy Ei corresponding to the
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microcanonical expectation value, ρ(E) is the density of states at energy E,Rij are elements of a ran-

dommatrix with mean zero and unit variance and ξO(Ē, ω) is a smooth function of the average

energy Ē = (Ei + Ej)/2 and the energy difference ω = Ei − Ej. We assumeRk
ij to be Gaussian

random variables which is a common assumption. Explicitly evaluating the matrix elements of the

coupling Hamiltonian, we find

⟨En,L,E∗m,R|ĤLR|Ea,L,E∗b,R⟩ =
K∑
k=1

⟨En,L|Ôk,L|Ea,L⟩⟨E∗m,R|Ô∗
k,R|E∗b,R⟩

=

K∑
k=1

⟨En|Ôk|Ea⟩⟨Eb|Ôk|Em⟩. (2.6)

To obtain this result we use the following property of the antiunitary operator Θ

⟨E∗i |Ô∗
l |E∗j ⟩ = ⟨Ei|Θ−1Ô∗

l |E∗j ⟩∗ = ⟨Ei|Θ−1Ô∗
l Θ|Ej⟩∗ = ⟨Ei|Ôl|Ej⟩∗,

where we identify Ô∗
l = ΘÔlΘ−1 per definition. ⟨ϕ|ϑ⟩∗ is the complex conjugate of ⟨ϕ|ϑ⟩. Using

Eq. (2.5) the matrix elements of Eq. (2.6) in the diagonal subspace evaluate to10

⟨En,L,E∗n,R|ĤLR|Em,L,E∗m,R⟩ =
K∑
k=1

∣∣∣⟨En|Ôk|Em⟩
∣∣∣2 ∼ K∑

k=1

|Rk
nm|2 ∼ K. (2.7)

For the elements in the offdiagonal subspace we find

⟨En,L,E∗m,R|ĤLR|Ea,L,E∗b,R⟩ ∼
K∑
k=1

Rk
naRk

bm ∼
√
K (2.8)

using the central limit theorem, where either n ̸= m or a ̸= b10. An intuitive argument for the

scaling of the matrix elements in the diagonal subspace is that the terms in the sum of Eq. (2.7) are

non-negative, whereas the terms in Eq. (2.8) have relative phases that can cancel each other, thereby
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effectively reducing the magnitude of the sum.

Since we choose an extensive number of couplingsK ∼ L, we expect the coupling between states

in the diagonal subspace to dominate in the thermodynamic limit. Based on this argument it is rea-

sonable to assume that the ground state lies in this subspace for large chains, as does the thermofield-

double state given in Eq. (2.2). Cottrell et al. also assume that Ôk only couple states that are close

in energy. They find that the low-energy behavior of the Hamiltonian with a coupling as in Eq.

(2.4) can be approximated by a single harmonic oscillator and the ground state has the same entan-

glement structure as the TFD with a gap Δ ∝ T. While Cottrell et al. did not explicitly test this

outside of a simple toy model, we will investigate this in the following chapter.

One model that has been extensively studied over the last decade in the context of coupled chains

is the spin- 12 anisotropic Heisenberg model, which is commonly known as the XXZ model. For a

chain of length L the Hamiltonian is given by

ĤXXZ =

L∑
i=1

(
Jxσ̂xi ⊗ σ̂xi+1 + Jxσ̂

y
i ⊗ σ̂yi+1 + Jzσ̂zi ⊗ σ̂zi+1

)
, (2.9)

where Jz is the anisotropy parameter and we introduce the spin- 12 Pauli matrices σ̂x = (| ↓⟩⟨↑ | +

h.c.), σ̂y = (−i| ↓⟩⟨↑ | + h.c.), and σ̂z = (| ↑⟩⟨↑ | − | ↓⟩⟨↓ |with h.c. standing for the Hermitian

conjugate where {| ↓⟩, | ↑⟩} are the spin- 12 basis states. For Jz = Jx > 0 it reduces to the isotropic

antiferromagnetic Heisenberg model that we will study in this work. In 1D this model is critical and

exhibits gapless Nambu-Goldstone bosons calledmagnons. Its low-energy subspace is described by a

conformal field theory.

Early works55,43,54 have analyzed the coupled system via the entanglement HamiltonianHS

which is defined for the reduced density matrix of a subsystem, S, via

ρS ∝ exp (−HS)
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up to normalization. If ρS is a Gibbs state, thenHS is trivially given by the subsystemHamiltonian

multiplied with the inverse temperature β = 1/T. For the TFD state we then expect thatHS ∝ Ĥ0,

i.e., the Hamiltonian of the uncoupled chain. Using perturbative analysis for both g ≫ 1 and

g ≪ 1, it was found that the reduced state on each chain is approximately equal to a Gibbs state in

leading order for the coupling in Eq. (2.4) for certain models43,54,55,45. Recently, Seki & Yunoki un-

dertook a large-scale numerical study using exact diagonalization to probe these predictions. They

find the perturbative agreement with small deviations in the nonperturbative regime. The results

of Seki & Yunoki are promising in that the fidelty, a measure for how similar two quantum states

are, remains close to its optimal value of 1. Correlations seemingly improve for larger system sizes,

potentially suggesting agreement in the thermodynamic limit. Given the difficulty of representing

the exponentially large Hilbert space on a classical computer, this study was unable to probe system

sizes larger than L = 12 using exact diagonalization however. In the following section we use tensor

network algorithms, most notably the density-matrix renormalization group60 and minimally en-

tangled typical thermal state sampling71, to explore this problem for long chains up to L = 256(cf.

App. A for numerical details). We also provide a CFT perspective inspired byMaldacena &Qi that

gives insights into the scaling of the correlation functions which we are ultimately interested in.

2.2 Coupled Spin- 12 HeisenbergModels

Suppose we have two identical spin- 12 antiferromagnetic isotropic Heisenberg models

H0 =

L−1∑
i=1

(
σ̂xi ⊗ σ̂xi+1 + σ̂yi ⊗ σ̂yi+1 + σ̂zi ⊗ σ̂zi+1

)
(2.10)
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as given in Eq. (2.9), i.e., Jx = Jz ≡ 1, with the coupling

HLR =

L∑
i=1

(
σ̂xi,L ⊗ σ̂xi,R − σ̂yi,L ⊗ σ̂yi,R + σ̂zi,L ⊗ σ̂zi,R

)
. (2.11)

This has the form of the local coupling in Eq. (2.4) with an extensive number of coupling operators.

We note that the operators in subsystem R are subject to CPT conjugation resulting in the relative

−1 in front of the σ̂yi,L ⊗ σ̂yi,R term in Eq. (2.11). The ground state of Eq. (2.11) is

|GS, LR⟩ =
L⊗
i=1

1√
2
(| ↑i,L⟩ ⊗ | ↓i,R⟩ − | ↓i,L⟩ ⊗ | ↑i,R⟩),

i.e., singlets |si,LR⟩ = (| ↑i,L⟩ ⊗ | ↓i,R⟩ − | ↓i,L⟩ ⊗ | ↑i,R⟩)/
√
2 shared across sites of the same index

i. The full Hamiltonian of two coupled models is

H =
L−1∑
i=1

[
σ̂xi,L ⊗ σ̂xi+1,L + σ̂yi,L ⊗ σ̂yi+1,L + σ̂zi,L ⊗ σ̂zi+1,L

]
+

L−1∑
i=1

[
σ̂xi,R ⊗ σ̂xi+1,R + σ̂yi,R ⊗ σ̂yi+1,R + σ̂zi,R ⊗ σ̂zi+1,R

]
− g

L∑
i=1

[
σ̂xi,L ⊗ σ̂xi,R − σ̂yi,L ⊗ σ̂yi,R + σ̂zi,L ⊗ σ̂zi,R

]
(2.12)

which can be represented as a ladder configuration with each leg corresponding to an isotropic

Heisenberg model and the inter-chain coupling across the rungs (cf. Fig. 2.1). We note that the

choice of inter-chain coupling is fairly generic, as long as it includes local operators. For an efficient

description in terms of matrix product states, we map this to a chain of length 2Lwith next-nearest

neighbor interactions.

This model is critical for g = 0, as the individual chains are critical Heisenberg models. g > 0

opens a gap with the rung singlet phase emerging for g ≫ 1, i.e., singlets shared across each rung of
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Figure 2.1: Illustration of two coupled spin‐ 12 Heisenberg chains. We denote the chains as L (blue spins) and R (red
spins)—each chain contains a total of L sites. The interaction within each chain is an isotropic Heisenberg coupling as in
Eq. (2.10). The interchain interactionHLR is given in Eq. (2.11) with a relative coupling strength g.

the ladder. The g → ∞ limit results in an infinite-temperature state on each leg of the ladder. This

is evident from tracing out one half of a singlet giving

ρi,L = Tri,R (|si,LR⟩⟨si,LR|) =
1
2
I2,L.

The reduced state of one left leg of the ladder is

ρL = TrR

( L⊗
i=1

|si,LR⟩⟨si, LR|

)
=

L⊗
i=1

ρi,L =
1
2L

IL,L,

where IL =
⊗L

i=1 I2 is the identity matrix of a system consisting of L two-level systems, which

coincides with the infinite-temperature Gibbs state limβ→0(ρβ) in Eq. (2.1).

Ultimately we are interested in the comparison between the Gibbs state and the coupled ground

state at finite g by studying their spatial correlations within a single chain. We consider correlation
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Figure 2.2: Short‐range correlations of σ̂xS (S ∈ {L, R}) for the coupled ground state |GSg⟩, the Gibbs state |TFDβ⟩ and
the ground state |ψ0⟩ of the uncoupled chain as a function of the single‐sided energy density ⟨H0

S⟩/L. There is excel‐
lent agreement between |GSg⟩ and the |TFDβ⟩ at matching energy densities, suggesting a natural way of comparing the
coupled ground state and the TFD. L = 256.

functions of the form

|⟨σ̂xS, L2
σ̂xS, L2+d⟩| = |⟨ψ|σ̂xS, L2

σ̂xS, L2+d|ψ⟩|, (2.13)

as a function of the distance d between the sites in a single chain S ∈ {L,R} for |ψ⟩ ∈ {|GSg⟩, |TFDβ⟩, |ψ0⟩}

with the ground state of a single Heisenberg chain |ψ0⟩. Note that there is no difference between ex-

pectation values in one of the two legs of the ladder and in the choice of the Pauli matrix σ̂α (α ∈

{x, y, z}). We can neglect single expectation values ⟨σ̂αi,S⟩ = 0 for α = x, y, z and S ∈ {L,R} as

they vanish for all states. Taking the absolute value avoids oscillations between positive and negative

values due to the antiferromagnetic interaction.

A subtlety is the comparison between these two states which have different tunable parameters: β

for the thermofield-double state |TFDβ⟩ and g for the coupled ground state |GSg⟩. One approach is
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maximizing the fidelity

F(β, g) = |⟨TFDβ|GSg⟩|,

i.e., the overlap between the thermofield-double state at inverse temperature β and the coupled

ground state at coupling strength g. However this is inefficient to obtain numerically for large β,

therefore significantly limiting this approach. Instead we follow a proposal by Seki & Yunoki and

match the energy density in the single Heisenberg models

εβ =
1
L
⟨TFDβ|H0|TFDβ⟩ and

εg =
1
L
⟨GSg|H0

L|GSg⟩. (2.14)

Fig. 2.2 depicts the nearest-neighbor correlations, i.e., d = 1, as a function of the energy density

of the corresponding state. We find excellent agreement between |GSg⟩ and |TFDβ⟩ at matching

energy density, further motivating this approach to comparing the coupled ground state with a

TFD.

Our procedure then becomes the following: we calculate |GSg⟩ and then sweep β to find |TFDβ⟩

such that |εg − εβ| < δεwhere we choose a small δε ∼ 10−2 in natural units of the Hamiltonian. For

small β ≲ 1 we can use imaginary time evolution methods to obtain the thermofield-double state.

For β > 1 and large system sizes, where imaginary time evolution becomes unfeasible, we employ

algorithms using minimally entangled typical thermal states71 which sample expectation values of

Gibbs states.

Given the agreement at short range, Fig. 2.3 shows the long-range correlations in Eq. (2.13) at

coupling strengths g = 0.05, g = 0.6 and g = 2.0. In Fig. 2.3a) (g = 0.05) we see that the

correlations at short distances coincide for all three states, while the long-range values of the Gibbs
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state differ from the other two. Interestingly the coupled and single ground states show similar cor-

relations across the relevant length scales for g = 0.05. In the thermodynamic limit conformal

invariance predicts that |ψ0⟩ exhibits power-law correlations

C(d) ≡ |⟨ψ0|σ̂
x
S, L2

σ̂xS, L2+d|ψ0⟩| ∝ d−Φ

for some Φ > 0. Due to |GSg⟩ having a finite gap to the first excited state for g > 0 we know that it

must have a correlation length ξGS that diverges as g → 0. In general, we expect the correlations of

the coupled ground state to have the following form

C(d) ∝ d−Φ · e−
d

ξGS ,

i.e., a power-law at short distances and exponential decay at large separation d. A similar relation

holds for the thermofield-double state but with a different correlation length ξTFD.

As the coupling strength between the two models is increased to g = 0.6 and g = 2.0 there is

a clear separation between the coupled and single ground state with |GSg⟩ approaching the correla-

tions of the Gibbs state (cf. Fig. 2.3b) and c)). We clearly observe the exponential decay predicted

for |GSg⟩. While the long-range behaviors of the coupled ground state and the thermofield-double

disagree at any of the displayed coupling strengths, this disagreement at large g and long distances is

exponentially small due to the fast decay of the correlations.

One useful way of understanding the scaling of correlations is to investigate their correlation

lengths ξGS and ξTFD, as we tune the coupling strength and the temperature. As previously discussed

the renormalization group predicts that the correlation length scales as

ξ ∝ |τ|−ν (2.15)
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Figure 2.3: Comparison of spatial correlations for the coupled ground state |GSg⟩, the Gibbs state |TFDβ⟩ and the single
ground state |ψ0⟩ for a) g = 0.05, b) g = 0.6, and c) g = 2.0. Dashed lines correspond to the fit we used to extract
the correlation length ξ. The values for d > 50 in c) are limited by numerical precision. L = 256.

with the critical exponent ν and a parameter τ controlling the strength of the perturbation. Here

τ = gwith νg for the coupled ground state. The correlation length of the Gibbs state has the same

scaling with τ = T and exponent νT—we note however that this is not related to criticality but

rather to the finite-temperature behavior of the conformal field theory13.

Fig. 2.4 shows the correlation length extracted from correlations as in Fig. 2.3 for both the cou-

pled ground state and the TFD state. We find νg = 0.94(6) for L = 256, where the error is given by

the standard deviation of the fit. Conformal field theory74,35 predicts the relation

ν =
1

D− Δε
(2.16)

for the critical exponent whereD is the sum of the spatial and temporal dimensions (hereD = 2)
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and Δε is the scaling dimension of the relevant operator in the perturbation. For Eq. 2.11, this is

double the scaling dimension 1
2 of the spin operator in each Heisenberg model, i.e., Δε = 2 · 1

2 = 1.

Therefore we expect νg = 1 which is close to our observation.

For the thermal correlations a similar analysis gives νT = 0.94 with a statistical error of±0.06.

We note that obtaining the correlation length at intermediate temperatures T ∼ 1 was a numerically

challenging task resulting in possible outliers. However these had little impact on the fit. The ideal

exponent νT can be obtained from the finite-temperature behavior of the CFT for the quantum

model. This behaves like the finite-size scaling by identifying the inverse temperature β = T−1 with

the system size L13. Conformal invariance then gives

ξTFD ∝ L ∝ β = T−1,

i.e., an exponent νT = 1 which is close to our result. While we find that the exponents for the ther-

mal state and the ground state of the coupled model are consistent with predictions within the error

margin, the agreement between them is remarkable. It is noteworthy that the agreement in the CFT

predictions, i.e., νg = νT, is specific for the model considered here and not a general feature.

The scaling of the correlation lengths suggests that |GSg⟩ and |TFDβ⟩ can be matched via their

correlation lengths. This would imply an equivalence between the coupling strength g and the tem-

perature T as

ξGS
ξTFD

∝ g
T

= const.

However neither the energy densities nor the short-range correlations would agree in that case, rais-

ing questions about the physical interpretation of this matching approach.

At small coupling strength we can use perturbation theory to study the properties of the coupled
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Figure 2.4: Finite‐size scaling of the correlation length ξ for the coupled ground state and the thermofield‐double state.
a) The correlation length of |GSg⟩ as a function of the coupling strength g for system sizes L = 32 to L = 256. A
power‐law emerges at sufficiently large g with saturation at weak coupling strength. We identify a scaling of ξGS ∝
g−0.94. b) The correlation length of the TFD also exhibits a power‐law scaling with the exponent νT = 0.94 which
agrees well with the exact CFT prediction νT = 1 13,6. At low temperature, we see an improvement in the finite‐size
scaling from L = 32 to L = 256.

ground state. Importantly this limit is of particular interest as it corresponds to low temperatures.

Consider the limit g → 0 which recovers the single ground state in each model, i.e., the T = 0

thermofield-double, and the limit g → ∞ giving an infinite-temperature TFD on each leg of the

ladder. The energy of the coupled ground state is a monotonic function of g, as is the energy of the

thermofield-double state, meaning that there must be some monotonic function relating g and T.

From this argument we know that at sufficiently small coupling strength the Gibbs state at the same

energy will be at very low temperature which is ultimately our region of interest.

Consider the following Hamiltonian

H0
LR = H0

L +H0
R − g Vd (2.17)
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where we defineVd as the inter-chain Hamiltonian in Eq. (2.4) restricted to the diagonal subspace

Vd =

N∑
k=1

∑
n,m

⟨En,L,E∗n,R|Ôk,L ⊗ Ô∗
k,R|Em,L,E∗m,R⟩ · |En,L,E∗n,R⟩⟨Em,L,E∗m,R|.

Following the arguments of Cottrell et al. the ground state of |ψ0gs⟩ ofH
0
LR takes the form of the

thermofield-double state |TFDβ⟩ at some β = T−1. We then consider the perturbation

Vo = HLR − Vd

=

N∑
k=1

∑
n,n′,m,m′

n̸=n′,m̸=m′

⟨En,L,E∗n′,R|Ôk,L ⊗ Ô∗
k,R|Em,L,E∗m′,R⟩ · |En,L,E∗n′,R⟩⟨Em,L,E∗m′,R| (2.18)

which is given by Eq. (2.4) restricted to the offdiagonal subspace. The first-order correction in g to

|ψ0gs⟩ is

|ψ1gs⟩ = g
∑
k>0

|k⟩
⟨k|Vo|ψ0gs⟩
Ek − E0

≈ g
Δ
∑
k>0

|k⟩⟨k|Vo|ψ0gs⟩ ≡
g
Δ
δ|ψ1⟩, (2.19)

where |k⟩ are the excited states ofH0
LR with energy Ek, E0 is the energy of the ground state and Δ =

E1 − E0 > 0 is the energy gap to the first excited state. We approximate the gap to higher excited

states to be constant Ek − E0 ≈ Δ. It follows that the first-order correction to the unperturbed

ground state scales as g
Δ .

In Fig. 2.5 we investigate the scaling of the energy gap of Eq. (2.12) as a function of the coupling

strength for increasingly large ladders. At large gwe observe an absence of finite-size effects indicat-

ing good convergence. However as we approach smaller coupling strengths g ≈ 0.1, there are clear

deviations due to finite-size effects. Instead of decreasing with g, Δ saturates at some value Δ0. This
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Figure 2.5: Scaling of the energy gap Δ of the coupled model as a function of the coupling strength g for chain sizes
L = 32 to L = 256. While the gap is converged in system size for g ≳ 1, the low g regime shows finite‐size effects
due to the gap of the uncoupled model (dotted lines). We extract the scaling Δ ∝ g1.04 from the fit for L = 256
(dashed line).

value decreases as the system size increases. We attribute this to the finite gap of the single Heisen-

berg models. For finite system sizes, the energy gap of Eq. 2.10 scales as Δ0 ∝ L−1 which we observe

in the dashed lines in Fig. 2.56.

This behavior at small coupling strengths is consistent with our results for the correlations: if the

gap of the coupled ground state is below Δ0, |GSg⟩ is roughly given by the individual ground states

of the decoupled chains, i.e., |GSg⟩ ≈ |E0,E∗0⟩. This may still be the case very close to Δ0 explaining

the observation that the correlations of the coupled ground state agrees remarkably well with those

of the decoupled ground state |ψ0⟩ at low g.

Most importantly for our analysis, for L = 256 the scaling is approximately Δ ∝ g1.04, where

we extracted the exponent 1.04(5) from a power-law fit. From CFT arguments6 one finds that the
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energy gap of the model scales inversely proportional to the correlation length, i.e.,

Δ ∝ ξ−1
GS ∝ gνg ,

as per our previous analysis, where we found νg = 0.94(6)which agrees reasonably well with our

results from the gap scaling. We therefore assume that Δ ∝ g. The first-order correction to the TFD

as the coupled ground state scales as

|ψ1gs⟩ ≈
g
Δ
δ|ψ1⟩ ∝ g

g
δ|ψ1⟩ = δ|ψ1⟩,

i.e., it is marginal in the coupling strength. Therefore, we would expect to see no improvement in

the agreement between the TFD and the coupled ground state as we approach g = 0. This is in line

with our observations for the correlations.

Lastly we investigate the scaling between the coupling strength and the temperature at matching

energy density to test the hypothesis by Cottrell et al. that the gap scales linearly in the temperature.

As previously discussed we know that g and Tmust be uniquely related to one another. We find the

scaling

T ∝ g0.88

with a statistical error of±0.05 for the exponent. Therefore, the gap Δ ∝ T1.18 which is a signifi-

cant deviation from the prediction of Cottrell et al.. While the Heisenberg model is integrable and

therefore not accurately described by the eigenstate thermalization hypothesis, we note that our

results did not change significantly upon adding integrability-breaking terms, e.g., a next-nearest

neighbor interaction. This suggests that the ETH description may be incomplete, requiring a more

thorough investigation for realistic models of the form in Eq. 2.3.
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L = 256 corresponds to T ∝ g0.88, deviating from the prediction T ∝ g according to Cottrell et al.. This scaling is
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3
Discussion and Outlook

In this section, we first recapitulate the results of our investigation on preparing low-entropy states

in Rydberg atom arrays, provide a discussion of our results, and ultimately give an outlook for open

questions and future investigations. As our approach is a proof of concept, we will also highlight

how our ideas can be translated into other experimental platforms for quantum simulation includ-

ing trapped ions and optical lattices.

52



Conformal Cooling using Rydberg Atom Tweezer Arrays

We investigated the 1D Rydberg blockade Hamiltonian as an interesting candidate to perform con-

formal cooling for two reasons: the ability to spatially modulate the interaction strength by chang-

ing the interatomic distance in a subsystem and its rich phase diagram. In particular our exploration

focuses on theZ2 phase and the critical point between the Z2 and disordered phases. In the or-

dered phase we find that quantummany-body scars are a significant detriment for our procedure

leading to nonthermal behavior and the subsequent break down of thermodynamic arguments for

conformal cooling. This is likely caused by the factorization of the Hilbert space into dynamically

disconnected subsectors. While the dynamics within each subsector may be ergodic on short time

scales, ergodicity is broken on long time scales that exceed the scope of current numerical methods.

Recent research12,53 suggests that many-body scarring breaks down near criticality. In our in-

vestigation we indeed find the restoration of ergodicity, however, a lack of diffusion persists. From

the analysis of Ljubotina et al. and Chen et al. it is known that energy transport in this regime is su-

perdiffusive. However thermalization did not occur in any of the systems probed here. This may

be due to the long time scale for thermalization in this model, limiting the scope of the current in-

vestigation. In light of this, the observation, that cooling can surpass thermodynamic predictions

for transient time scales, raises the question behind the necessity to thermalize. Instead, we can de-

couple the system from the ramp and bath regions when the cooling is optimal. Afterwards, the

system can thermalize on its own, potentially to perform conformal cooling again by combining it

with copies that were also subjected to conformal cooling. While it may seem sufficient to recycle

the bath and rescale it appropriately to reach temperatures below the system’s temperature during

this repeated cooling process, this is inefficient in terms of the required time scale for thermalization.

On the one hand, it may be necessary to go to very small rescaling factors λbath ∼ 0.1 such that the

time scale for thermalization increases and transport properties, e.g., the energy variance in the bath,
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deteriorate. On the other hand, this can lead to long-lived modes localized at the boundary between

the system and the bath which hinder energy transport51. Therefore it is crucial to repeat the pro-

cess with identical copies—a disadvantage of this procedure is that the number of required copies

increases with the number of cycles.

While the precise nature of overcooling is left for future investigation, we present evidence that

it is a finite-size effect originating at the boundary of the system and the ramp. Intriguingly, the ob-

servation that this transient cooling is reversed after a short time is consistent with results for free

fermions36. The work by Kuzmin et al. finds that the 1D transverse-field Ising model also exhibits

cooling with rapid reabsorption. They explain this in terms of the propagation of low-energy quasi-

particles. Importantly, due to the spatial modulation of the Hamiltonian these quasiparticles have a

position-dependent velocity. This leads to the quasiparticles slowing down in the bath region effec-

tively to get stuck there for some time, before being reflected at the boundary and returning into the

system. This agrees well with our observations including the plateaus in Fig. 1.8a). While our work

considers high-temperature initial states, Kuzmin et al. deal with initial states close the ground state.

This leads us to believe that overcooling may be related to similar low-energy quasiparticles which

are more mobile due to longer length-scales close to the critical point. This establishes an interest-

ing connection between criticality, which mostly concerns low-energy behavior, and high-energy

transport.

This quasiparticle picture also gives rise to a toy model explaining the t2-scaling of the average

energy density of the system during overcooling in Fig. 1.5b). Consider noninteracting particles

with energy E hopping on a lattice. Every site i emits particles at a constant rate Γi ∝ λiΓ with the

emission rate Γ in the system, i.e., sites in the system emit at a higher rate than particles in the bath.

A particle hopping over the system-bath boundary into the bath constitutes a loss of energy E. The
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rate at which the system loses energy is roughly given by

ΓS(t) ≡
∂

∂t
ES ∝ Γ (λbath − 1)A(t),

where we assume a flat bath with Hamiltonian magnitude λbath. A(t) is the area whose particles

can reach the boundary within time t. Given that the particles propagate ballistically at a constant

rate from the system to the bath, we can reasonably assume that this area grows linearly in time, i.e.,

A(t) ∝ t, such that

ΓS(t) ∝ Γ (λbath − 1) t.

By integrating this we find that the energy in the system decreases quadratically, as we find in the

numerics. This toy model corresponds roughly to a biased random walk in 1D. This opens an in-

teresting opportunity to study overcooling from a statistical mechanics perspective, e.g., by deriving

a Boltzmann-type transport equation36. Of course, the presented toy model is highly simplified.

More realistic models should take the finite heat capacity in the bath into account and consider a

Stefan-Boltzmann law for the emission rate such that emission depends on the energy, or equiva-

lently the temperature, of a given site. This requires careful consideration so we leave this for future

studies.

There is an interesting prospect to exploit overcooling in 1D arrays by increasing the boundary

between the system and the bath region. Instead of having one well-defined system region coupling

to a bath, it may be possible to split the system into subsets with each coupling to a bath, e.g., via

a periodic spatial modulation of the Hamiltonian. A similar setup was considered byWen et al.

however with periodic driving in a conformal field theory. They identify heating regions in space

which absorb entropy and energy from the rest, leaving the reduced state of the cooling region in
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its ground state. It would be interesting to investigate whether this also happens in models that

are within experimental capabilities. Fig. 1.5a) shows that cooling is not uniform and that certain

sites cool significantly more than the entire system region. Therefore, periodic spatial modulations

could be useful to remove as much energy as possible from a series of small subsystems which are

eventually combined. While this may lead to improvements in the energy density, we need to take

into account that many-body correlations are limited to each small subsystem. It may be possible to

equilibrate these small systems together to potentially resolve this limitation.

Quantum simulation algorithms at finite temperature may be another application that would

not explicitly require equilibration42. A key feature is the efficient preparation of initial states at low,

but finite energy density. We demonstrated that our approach can significantly decrease the energy

density within a few microseconds (cf. Sec. 1.2.2) for reasonable experimental parameters15,66. This

may be sufficient for the proposal of Lu et al. to study finite-temperature properties of many-body

systems.

The transverse-field Ising model is a possible first toy model to test this idea of repeatedly per-

forming conformal cooling on a system by decoupling the baths and ”stitching” together the re-

maining system. In the second cooling cycle, some of these system would then take the role of the

bath. This introduces a non-local coupling in the second cycle therefore precluding the Jordan-

Wigner transformation. However despite this supposed breakdown of integrability, it still takes

the form of a local transverse-field Ising model, limiting the growth of entanglement and making

it amenable to matrix product state algorithms. In terms of conformal cooling this model does not

thermalize according to ETHwhich means that thermodynamic arguments do not apply. For ther-

malizing models it may be possible to reach sufficiently large systems and time scales using density

matrix truncation83. This numerical method has successfully been employed to study spin trans-

port and may be adapted for conformal cooling89.

Ultimately however the observed cooling was not sufficient to reach temperatures where we
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would expect to see order. We identify two reasons: First, the temperature of the initial state is a

limiting factor. Starting at very high temperature may require going to very low coupling strengths

in the bath, λbath ≪ 1, which can deteriorate the protocol as observed in our results. At the same

time it is important to consider the temperatures needed to observe order. The Rydberg blockade

model has a quantum phase transition with no finite-temperature order. This means that we need

to cool below the energy gap of the Hamiltonian to observe the desired order. It is possible to cir-

cumvent this limitation by investigating models that exhibit finite-temperature phase transitions,

e.g., as considered by Zaletel et al.. In the context of Rydberg atoms in tweezer arrays, the 2D quan-

tum transverse-field Ising model is a candidate which can be straightforwardly implemented on cur-

rent experimental setups14 and exhibits a finite-temperature phase transition78. The temperatures

required for this transition are on the order of the interaction strength which should be feasible for

conformal cooling. Here it is also promising to use conformal cooling to prepare low-energy states

that are then used for digital quantum simulation42.

Another more speculative application of conformal cooling in the context of Rydberg atom

tweezer arrays is in combination with adiabatic methods to achieve more efficient state prepara-

tion. As previously mentioned one key disadvantage of adiabatic preparation is its inefficiency upon

approaching a critical point. We envision a protocol where one follows an adiabatic path close to

the critical point, then performs conformal cooling across the region where the energy gap closes

and finally continues on an adiabatic path. Assuming that the ground state on one side of, but still

close to, the phase transition is an low-energy state with regards to a near-critical Hamiltonian on

the other side of the critical point, conformal cooling may be useful to remove the low-energy ex-

citations, that are created during the quench, leaving behind a subsystem close to its ground state.

Therefore it may also improve the quantum Kibble-Zurek mechanism90. The overall idea falls un-

der the category of shortcuts to adiabaticity and would be most useful for models with a gap that

vanishes exponentially in the system size at the critical point, where adiabatic methods fail. A re-
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cent example of such a model is given by Schiffer et al. as a quasi-1D Rydberg blockade model with

a unit cell of three Rydberg atoms arranged in an isosceles triangle. While Schiffer et al. study this

model from the perspective of quantum optimization, it is an interesting model to explore many-

body phases using conformal cooling in near-term experiments.

Adiabatic Preparation of Thermofield-Double States using Rydberg Tweezer

Arrays

In addition to the dynamical conformal cooling protocol we also studied the adiabatic prepara-

tion of thermofield-double states. Here we investigated the ground state of two coupled isotropic

antiferromagnetic Heisenberg chains. This is motivated by predictions that this ground state is ap-

proximately given by a thermofield-double state10,45 which would open the possibility of preparing

Gibbs states using tweezer arrays to study finite-temperature phenomena. Our investigation reaches

system sizes surpassing any previous study by employing matrix product state algorithms (cf. App.

A). We also provide conformal field theory arguments to complement our numerical results.

While we find excellent agreement between the short-range correlations of the coupled ground

state and the Gibbs states at matching energy density, there is disagreement at long separations. Our

tensor network approach enables this comparison whereas previous studies were limited to short

length scales. In particular, we extract the correlation length from these results which are an im-

portant figure of merit for studying phases of matter. Interestingly our results indicate the same

correlation length scaling exponent of ν = 1 for both states which is in agreement with predic-

tions from conformal field theory. Here it is important that the exponent of the thermal correlation

length is always fixed. This is in contrast to the coupled ground state for which it depends on the

scaling dimension of the perturbing operator Δε, ν = (D − 2Δε)
−1 inD + 1 dimensions. There-

fore it is merely coincidental that the scaling agrees for this model and choice of coupling operators
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and is not a general feature. Given that the observed disagreement is exponentially vanishing in the

distance, we believe that a mismatch of correlation lengths is not necessarily detrimental to our ap-

proach.

On the other hand, a perturbative argument suggests that the first-order correction to the TFD

is proportional to g/Δ, where Δ is the energy gap between the ground and first excited state of the

coupled model. In the isotropic antiferromagnetic Heisenberg model the gap scales as Δ ∝ g in

good agreement with CFT predictions, such that the correction is marginal, i.e., nonvanishing as g

goes to 0. This suggests that we need to identify a model with a sublinear gap scaling Δ ∝ gα (α < 1)

for the first-order correction to vanish in the limit g → 0. An example of this is the critical spin-

1 Potts model, a generalization of the Ising model for spin-1 particles. For the right choice of local

coupling operators it can be shown that the gap scales as Δ ∝ g
2
3 . Thus, the first-order correction

vanishes as g
1
3 → 0 for g → 0 in the thermodynamic limit. This is a natural next step to verify this

perturbative argument. We note however that the Potts model is not easily implemented in current

Rydberg atom tweezer arrays. The (an-)isotropic antiferromagnetic Heisenberg model on the other

hand has been studied before by coupling two highly excited Rydberg states and dressing one of

them with the electronic ground state, leading to an interaction as in Eq. (2.9)2,7.

Near-Term Experimental Implementations

Both of our approaches, conformal cooling quenches and adiabatic preparation of thermofield-

double states, are studied with current Rydberg atom tweezer array experiments in mind.

Our adiabatic approach should be straightforward to adopt: First, one prepares L pairs of Ry-

dberg atoms in singlet states at large separation—this corresponds to the g → ∞ or infinite-

temperature limit. Afterwards one would move these pairs closer together, leading to interactions

between them, assuring adiabaticity along this path. This constraint is fairly straightforward to
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follow given the known gap scaling of Δ ∝ g. The runtime of the algorithm can then be lower-

bounded by (ming(Δ))−2 = g−2
f

77 where gf is the desired final coupling strength. While this

diverges as gf → 0, adiabatic passage is ensured for any finite gf with the advantage that one can

stop the evolution when it becomes too slow and still obtain a ground state close to a TFD state

at some temperature determined by the final coupling strength. At the end of this evolution, one

would simply discard the Rydberg atoms in one of the two ladders which corresponds to taking the

partial trace, leaving the rest of the Rydberg atoms in a reduced state that is similar to a Gibbs state

at short-range. Spatial adiabatic passage48 is a well-established method for ultracold atoms trapped

in tweezer arrays. Therefore our proposal for the adiabatic preparation of thermofield-double states

is well within experimental capabilities and presents an opportunity to study finite-temperature

phenomena using analog Rydberg atom array simulators.

Conformal cooling on the other hand requires the more specialized ability to spatially modu-

late the Hamiltonian which is not yet fully developed. The interaction terms can be rescaled rather

easily based on the movement of the optical tweezers. There are also ongoing developments1 to es-

tablish this capability for the laser detuning Δ using AODs leaving only the site-dependent Rabi

frequency Ω as a necessary ingredient. This requires a magnetic field gradient across the tweezer

array. While magnetic field gradients are a standard tool in many atomic experiments, e.g., in the

context of magneto-optical traps, it may be difficult to generate them at the required micrometer

scale in the context of optical tweezers. As of the time of writing this, we are not aware of any efforts

on this end.

Interestingly it may be possible to perform conformal cooling using Rydberg atom tweezer ar-

rays in the XXZmodel instead. As previously pointed out, this can be naturally implemented as

well by coupling two highly excited Rydberg states and dressing one of them with the electronic

ground state. This results in a flip-flop interaction that decays asR−3 in the interatomic distanceR.

A recent investigation has identified multiple many-body phases and interesting critical behavior39
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making it a natural alternative for exploring conformal cooling. While it is noteworthy that long-

range interactions may lead to subtleties in the treatment of conformal cooling, we think that this

is negligible as they decay sufficiently fast—we confirmed this in the long-range Rydberg blockade

model (cf. Eq. (1.6)) in comparison with the nearest-neighbor model.

As pointed out by Zaletel et al. ultracold polar molecules or atoms in optical lattices are another

candidate for implementing conformal cooling. These systems are commonly used to perform ana-

log quantum simulation of the Fermi-Hubbard model which is widely believed to offer insights into

high-temperature superconductivity21. Entropy extraction remains an elusive challenge limiting

explorations of the low-energy physics26. Spatially modifying the magnitude of the Hamiltonian

may be achieved by modulating the density of particles in the bath90 or by appropriately changing

the optical potentials36. While both Zaletel et al. and Kuzmin et al. have been successful in cooling

this model using both adiabatic and diabatic methods, both studies used relatively low-temperature

initial states.

Trapped ions are another natural platform to consider conformal cooling for two reasons: their

long-range interactions proportional toR−2 for the interparticle distanceR and their finite-temperature

phase transition between a ferromagnetic and paramagnetic phase61. The Hamiltonian can be de-

scribed by a long-range version of the transverse-field Ising model

HTI = −J
∑
i<j

1
r2ij
σ̂zi σ̂zj −Ω

∑
i
σ̂xi (3.1)

where rij is the distance between the ions at sites i and j. Schuckert et al. recently used the algorithm

proposed by Lu et al. to study the finite-temperature transition that this model exhibits. Given that

the required temperatures are on the order of T/J ∼ 1, both conformal cooling and the adiabatic

preparation of TFD states may be useful alternatives for studying this transition using analog quan-

tum simulators.
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Alternatives Approaches to Cooling in AnalogQuantum Simulators

Finally, we want to provide an outlook over alternatives to our cooling proposals that may be suited

for analog quantum simulation in Rydberg atom tweezer arrays. The first comprises a generalized

approach similar to adiabatic demagnetization in solid-state systems47. Here, a spin system has

controlled interactions with a thermal bath and is subjected to an external magnetic field. This can

be used to polarize the spin ensemble and reach temperatures in the µK range. In the context of

programmable quantum simulation, Matthies et al. consider a setup where one hasN interacting

qubits* in a random state with an arbitrary Hamiltonian andN noninteracting spin- 12 particles,

which are fully polarized and act as the bath. There is a time-dependent interaction between each

qubit and a corresponding bath spin with a time-dependent magnetic field acting on the bath spins.

The refrigeration cycle works by adiabatically turning on the qubit-spin interaction and slowly re-

ducing the magnetic field at the same time. Therefore the system and bath remain in thermal equi-

librium, resulting in an energy flow from the system to the bath. At the end, each bath spin is mea-

sured and reset to its original polarization. This was demonstrated for a one-dimensional mixed-field

Ising model byMatthies et al.. While this model may be naturally implemented on a Rydberg atom

array, the requirements for adiabatic evolution and noninteracting degrees of freedom in the bath

may be difficult to realize.

Another approach is sympathetic cooling, wherein the system degrees of freedom couple co-

herently to bath degrees of freedom that are dissipatively driven to continuously extract energy

from the bath56. In the Rydberg atom tweezer array that we discussed so far, engineering a dissi-

patively driven subsystem while maintaining coherent interactions with the systemmay be chal-

lenging. As pointed out by Singh et al. dual-species neutral atom tweezer arrays may be a natural

candidate for implementing sympathetic cooling. Here, two atomic species, e.g., rubidium and ce-

*A synonym for a two-level system, more commonly used in information theory contexts.
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sium, are trapped in the tweezer array and can be individually addressed due to the different atomic

level structures. This has the crucial advantage that one species can be optically driven but not the

other—all the while maintaining strong Rydberg interactions between them. Following the pro-

posal of Raghunandan et al., it would be interesting to investigate how this approach works in the

case of many interacting degrees of freedom in the bath. An intriguing advantage is that this ap-

proach does not necessarily rely on thermalization properties of the model or adiabatic methods, in

contrast to the previously discussed approaches. Given the recent demonstration of a dual-species

tweezer array by Singh et al., sympathetic cooling is a promising approach for preparing low-energy

states on a programmable quantum simulator.
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A
Numerical Techniques

Quantummany-body systems are notoriously hard to solve, both analytically and numerically. On

the one hand, it is well known that many models—including the model presented in Eq. (1.6)—are

generally not exactly solvable, leaving numerical simulation as the only viable option. On the other

hand, the exponential growth of the Hilbert space of a system with the number of constituents no-

toriously complicates this task for classical computing. However, small systems up to roughly 16

particles can be studied exactly via exact diagonalization of the Hamiltonian. For larger systems,
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there are alternatives using tensor networks for approximate representations of the full quantum

state. We note that there is a plethora of other methods, includingMonte Carlo algorithms, ap-

proaches to sparse matrix problems and neural networks.

In this section we will give an overview over the computational approaches used in the main

body. We will first discuss matrix product states (MPS) which are a particularly versatile ansatz for

studying 1D quantummany-body problems. After a detailed introduction to familiarize us with the

formalism, our focus becomes the specific algorithms that we employed in the scope of this work.

This includes a discussion of time evolution using matrix product operators, the density-matrix

renormalization group (DMRG) for finding ground states and minimally entangled typical thermal

state algorithms which are useful for efficiently sampling expectation values of canonical ensembles.

The aim of this work is not to provide in-depth knowledge into each topic, but rather to familiarize

the reader with the key concepts. We refer interested readers to more detailed work and reviews at

the relevant sections. Lastly we will discuss the specific case of the transverse-field Ising model. We

will demonstrate how it can be analytically cast into a quadratic fermionic Hamiltonian that can be

solved by exact diagonalization. Crucially this problem reduces to a free-fermion problem, making it

tractable for classical computation.

A.1 Matrix Product States

Gaining popularity during the 2000s, matrix product states have since become a staple within the

quantummany-body physics community due to their versatility. They are particularly well suited

for studying one-dimensional problems, but have also been successfully applied to two-dimensional

systems including the observation of continuous symmetry breaking in a 2D dipolar XY model7.

What makes MPS appealing among other aspects is that they can be efficiently applied to study a

wide range of dynamical systems, ground state problems and thermal properties. However MPS al-
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gorithms have also sparked some interest outside of physics, e.g., in deep learning where similar ideas

were employed to dynamically compress the layers of a neural network70. The following section

introduces the key concepts behind matrix product states and follows the work of Schollwöck.

MPS make use of a rather efficient way of representing quantum states: the Schmidt decompo-

sition. Given two quantum systems A,B and their state |ψAB⟩ the Schmidt decomposition is given

by

|ψAB⟩ =
χ∑

α=1
λα|αA, αB⟩, (A.1)

where χ is the bond dimension, λα ∈ R are the Schmidt values and |αA,B⟩ are a distinct set of or-

thonormal states on A and B. The Schmidt values fulfill
∑

α λ
2
α = ⟨ψAB|ψAB⟩—from now on we as-

sume the state to be normalized, i.e., ⟨ψAB|ψAB⟩ = 1. The bond dimension is equal to the minimum

local Hilbert space dimension of A and B. We use |αA, αB⟩ as shorthand notation for |αA⟩⊗ |αB⟩. As

an illustrative example, consider the singlet state 1√
2(|01⟩ − |10⟩) on two qubits. This state has the

Schmidt values± 1√
2 and the orthonormal Schmidt states |0, 1⟩ and |1, 0⟩.

The Schmidt decomposition effectively corresponds to a singular value decomposition (SVD).

Given a complexm × nmatrixM ∈ Cm×n it iteratively constructs unitary matricesU ∈ Cm×m

andV ∈ Cn×n as well as a real diagonal matrix Λ ∈ Rm×n such thatM = UΛV†, whereV†

is the Hermitian transpose ofV. The trick to obtaining a matrix product state is by successively

applying Schmidt decomposition and introducing the matrices A[A],jA
α = ⟨jA|αA⟩ and A

[B],jB
α =

⟨jB|αB⟩, where |jA,B⟩ are a canonically chosen orthonormal basis, e.g., {| ↑⟩, | ↓⟩} for spin- 12 particle

or {|g⟩, |r⟩} for the Rydberg atom. This gives the equivalent representation

|ψAB⟩ =
∑
jA,jB

χ∑
α=1

A[A],jA
α A[B],jB

α λα|jA, jB⟩.
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Keeping in mind that the sum over λα can be absorbed into one of the A
[A,B],jA,B
α matrices and the

sum over α replaced with a matrix product, resulting in the final form of the MPS

|ψAB⟩ =
∑
jA,jB

A[A],jAA[B],jB |jA, jB⟩.

Note that the matrices A[A],jA ,A[B],jB here have just one index each (α = 1, . . . , χ) meaning that they

have one trivial dimension. As we will see below for larger systems, this is only true at the edge—the

rest have two nontrivial dimension in general. For the singlet state, performing this trivially gives the

four matrices

A[A],0 =

(
1 0

)
, A[A],1 =

(
0 1

)

A[B],0 =

 0

− 1√
2

 , A[B],1 =

 1√
2

0

 .

The true computational power of MPS comes by considering chains of d-level systems: letN be

the length of the chain, d the local Hilbert space dimension of the constituents and |ψ⟩ a state on

the combined Hilbert space. We start with Eq. (A.1) where we consider the bipartition at the first

bond such that A is the Hilbert space of the first site and B the one of the combinedN−1 remaining

sites:

|ψ⟩ =
d∑

α1=1
λα1 |α1,L, α1,R⟩.

We note that |αn,L⟩ and |αn,R⟩ refer to the Schmidt states left and right of the bond n between sites

n and n+ 1. The first step is again analogous to the simple case described above by defining A[1],j1
α1 =
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⟨j1|α1,L⟩ resulting in the state

|ψ⟩ =
d∑

j1=1

χ1∑
α1=1

A[1],j1
α1 λα1 |j1, α1,R⟩.

Now the iterative procedure continues by decomposing the state of the second bond using an

SVD into

|ψ⟩ =
χ2∑

α2=1
λα2 |α2,L, α2,R⟩,

where the bond dimension χ2 is the dimension of the combined Hilbert space of sites 1 and 2, i.e.,

d2. We now see that we can introduce A[2],j2
α1,α2 such that

|α2,L⟩ =
χ1∑

α1=1

d∑
j2=1

|α1,L, j2⟩⟨α1,L, j2|α2,L⟩ =
χ1∑
α1

d∑
j2=1

A[2],j2
α1,α2 |α1,L, j2⟩.

Using this result we find

|ψ⟩ =
χ1∑

α1=1

χ2∑
α2=1

d∑
j1,j2=1

A[1],j1
α1 A[2],j2

α1,α2λα2 |j1, j2, α2,R⟩.

By defining A[n],jn
αn−1,αn = ⟨αn−1,L, jn|αn,L⟩ (N > n > 1) we can iteratively decompose the quantum

state as follows

|ψ⟩ =
χ1∑

α1=1

χ2∑
α2=1

· · ·
χN∑

αN−1=1

d∑
j1,j2,...,jN=1

A[1],j1
α1 A[2],j2

α1,α2 . . .A
[N],jN
αN−1 λαN−1 |j1, j2, . . . , jN⟩

=
d∑

j1,j2,...,jN=1
A[1],j1A[2],j2 . . .A[N],jN |j1, j2, . . . , jN⟩. (A.2)

The indices j1,...,N are commonly referred to as the physical indices with α1,...,N−1 being the vir-
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tual indices. We replaced the summation over the virtual indices in Eq. (A.2) with matrix products

in the second line and also absorbed the trivial, diagonal matrix λαN−1 = λαN−1,αN−1 into A[N],jN−1 .

We note that the first and last matrix A[1],j1 ,A[N],jN only depend on one virtual index while all other

depend on two in the case of open boundary conditions. For periodic boundary conditions, they

also have the virtual indices αN, α1 and αN−1, αN which effectively corresponds to taking the trace

over the matrix product in Eq. (A.2). The matrices A[k],jk can be represented in graphical notation as

a tensor with three legs corresponds to the virtual and physical indices.

The decomposition that we proposed also holds for more general matrices A[n],jn . It turns out

that there is a particularly useful construction: the canonical formwhich is given by

|ψ⟩ =
d∑

j1,j2,...,jN=1
Λ0M[1],j1Λ1M[2],j2Λ2 . . .ΛN−1M[N],jNΛN|j1, j2, . . . , jN⟩. (A.3)

The Λn are diagonal, real matrices with χn entries; we note that Λ0 = ΛN = ( 1 ). We note that Eq.

(A.2) is in canonical form up to identification Λn = λn andM[n],jn = (λn−1)
−1A[n],jn , which can be

efficiently computed given that λn is diagonal. Furthermore, it is useful to define the matrices

L[n],jn = Λn−1M[n],jn and (A.4)

R[n],jn = M[n],jnΛn. (A.5)

Eqs. (A.4) and (A.5) are commonly referred to as the left- and right-canonical form. This naming

convention becomes apparent when considering that

|αn+1,L⟩ =
χn∑

αn=1

d∑
jn+1=1

L[n],jn
αn,αn+1 |αn,L, jn⟩

|αn,R⟩ =
χn+1∑

αn+1=1

d∑
jn=1

R[n],jn
αn,αn+1 |jn, αn+1,R⟩.
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This means that the left-canonical form corresponds to the Schmidt states left of bond n and

the right-canonical form to those to the right of bond n. While the iterative procedure that we in-

troduced above results in the left-canonical form, we obtain anMPS in right-canonical form via

successive SVDs starting at the right end. The mixed form corresponds to anMPS which is in left-

canonical form left of site i and in right canonical form to its right. The matrix on site i is given by

Θ[i],ji = Λi−1M[i],jiΛi. This is useful as the state of the combined system can be written as

|ψ⟩ =
χi−1∑

αi−1=1

χi∑
αi=1

d∑
ji=1

Θ[i],ji
αi−1,αi |αi−1,L, ji, αi,R⟩. (A.6)

After doing some basic linear algebra we find that the expectation of any local operator Ôi be-

comes

⟨ψ|Ôi|ψ⟩ =
χi−1∑

αi−1=1

χi∑
αi=1

d∑
ji,j∗i =1

Θ[i],ji
αi−1,αi

(
Θ[i],j∗iαi−1,αi

)∗
⟨j∗i |Ôi|ji⟩

which depends solely on Θ[i],ji and does not require knowledge of the other matrices of the MPS.

This makes it much more computationally tractible. Similar results can be shown for multi-site op-

erators, where only the matrices between the farthest apart sites are needed for expectation values.

Outside the efficient computation of expectation values the canonical forms are helpful for applying

unitaries. Many of the algorithms that we will discuss in later section make use of the decomposition

in Eq. (A.6) by only changing local matrix on one site or one bond at a time. This allows for effi-

cient iterative procedures. The computational complexity of this process isO(N · d3 · χ3max) using

the bigO notation where χmax is the maximum bond dimension.

It is important to point out that this decomposition does not circumvent the problem of the
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exponentially large Hilbert space because the bond dimensions

χn =


dn, for n ≤

⌊N
2
⌋

dN−n for n >
⌊N
2
⌋

still scale exponentially in the system sizeNmaking it inefficient to write down all coefficients for

large systems. However it is often not necessary to write down all coefficients—instead Schmidt

values below a certain threshold ε can be discarded in practice*. For example ground states of one-

dimensional, gapped Hamiltonians with a finite range of interactions can be approximated with an

MPS using a bond dimension that scales polynomially inN instead of exponentially24,38.

To understand where this comes from, it is useful to take a step back and discuss how we measure

the complexity of a state. One way of doing this is using the entanglement entropy S for a biparti-

tion of the system into two subsystems A and B. It is defined as the von Neumann entropy

S = −Tr
[
ρAlog

(
ρA
)]

of the reduced density matrix ρA of A. Using the Schmidt decomposition, we equivalently find

S = −
∑
α

λ2αlog
(
λ2α
)

with the Schmidt values λα.

Using the convention 0 · log(0) = 0 we see that if A and B are in a product state |ψAB⟩ =

|φA⟩ ⊗ |θB⟩, then their entanglement entropy is vanishing. Otherwise it is larger than zero and we

call them entangled. If two systems are entangled, they are also correlated, meaning that ⟨ÔAÔB⟩ −

⟨ÔA⟩⟨ÔB⟩ ̸= 0 for some operators ÔA,B.

*In general we choose ε = 10−10.
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By discarding Schmidt values, the resulting MPS has a lower entanglement entropy. Therefore

it is important that the Schmidt values decay sufficiently fast. In practice this happens for area law

states. For these states the entropy S scales with the surface area |∂A| of the region A that is being

considered. In contrast typical states, i.e., states drawn from a Haar measure, obey a volume law, S ∝

|A|, making them intractible for efficient classical simulation. The area law originates in the finite

correlation length ξ of the state, meaning that a sufficiently large region (lA ≫ ξ) is only entangled

with the rest of the system at its boundary. In one dimension this means that the entanglement

entropy is constant forN > ξ such that we can approximate the state using anMPS efficiently. This

is in fact a numerical challenge in Sec. 2.2.

Ground states of 1D gapped local Hamiltonians are not the only states of interest in the expo-

nentially large zoo of states in the Hilbert space that can be well approximated using MPS with a

fixed bond dimension. In practice this includes low-entanglement states and those which have only

a few dominant singular values—this holds for both real and imaginary time evolution of product

states for sufficiently short times. This observation is crucial for many of the algorithms that we will

discuss in the following section.

A.1.1 Matrix Product Operators

The matrix product representation is not unique to quantum states but can also be applied to oper-

ators. For any operator Ôwe can find matricesW[k],ik,jk ∈ Cd×d such that

Ô =
∑

i1,...,iN
j1,...,jN

vLW[1],i1,j1W[2],i2,j2 . . .W[N−1],iN−1,jN−1W[N],iN,jNvR|i1, . . . , iN⟩⟨j1, . . . , jN|, (A.7)

where vL and vR are auxiliary vectors at each end of the chain and |ik⟩, |jk⟩ are the basis states on

site k. In graphical notation, the matricesW[k],ik,jk can be represented as tensors with four legs
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corresponding to the two physical indices ik, jk and the two virtual indices βk, βk+1. For models

with short-range interactions there is an efficient way of constructing the matrix product opera-

tor (MPO) representation for the Hamiltonian. For long-range models the bond dimension grows

significantly which can be a limiting factor.

A.1.2 Time-evolution ofMatrix Product States

As we are concerned with dynamics of quantum chains in this work, time evolution is a central

topic of interest. While a plethora of methods have been developed over the years, we give a gen-

eral overview in this section with a focus on the MPOWII method, which we employ for all of our

numerics. For a detailed review we refer to Paeckel et al..

In general we are interested in applying the unitary time-evolution operator

U(t) = e−iH t

which dictates the evolution under the time-independent Schrödinger equation for a Hamiltonian

H up to time t. This means that |ψ(t)⟩ = U(t)|ψ(0)⟩ for any initial state |ψ(0)⟩. A significant

problem is that this operator is dense, i.e., it requires an exponential number of coefficients in the

system sizeN and acts highly nonlocal. A good first step is to consider splitting the time evolution

into a series of small steps of size δt such that

U(t) =
(
e−iH δt

)n
= (U(δt))n

where n · δt = t. In general it is much more tractable to find a good approximation forU(δt) and

apply it to a state n times than to performU(t). For short-range Hamiltonians, in particular nearest-

neighbor models, the time-evolving block decimation (TEBD) is a good method for approximating
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this operator. To illustrate this, consider the following nearest-neighbor Hamiltonian

H =
∑
i
ĥi,i+1 =

∑
i even

ĥi,i+1 +
∑
i odd

ĥi,i+1 = Heven +Hodd (A.8)

which we decompose into a series of terms acting only on even and odd bonds. We find that

U(δt) = e−iH δt = e−i(Heven+Hodd)δt ≈ e−iHevenδte−iHoddδte−i[Heven,Hodd]δ2

≈ e−iHevenδte−iHoddδt +O
(
δt2
)

which is known as the Trotter-Suzuki decomposition where we used the Baker-Campbell-Hausdorff

formula in the first line and introduced the commutator [Heven,Hodd] = HevenHodd − HoddHeven.

Since all terms inHeven commute with one another, we can simply exponentiate them individually

e−iHevenδt =
∏
i even

e−iĥi,i+1δt.

The same also holds forHodd such that it just simplifies to applying exp(−ihi,i+1δt) on all even

bonds, performing SVDs on all bonds and then doing the same for all odd bonds. We note that

terms acting only on a single site at once can easily be accommodated. Extensions to longer-range

models exist but rely on a growing number of swap gates that swap sites i and i + 1 to turn a next-

nearest into a nearest-neighbor interaction and then swap back.

A key advantage of TEBD is that it can be parallelized as every term inU(δt) only acts on two

sites at once. There are also generalization to reduce the error fromO(δt2) toO(δt5) at the cost of

more unitary matrices to apply per time step.
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A.1.3 MPOWII Method

For systems with sufficiently long-range interactions, e.g., trapped Rydberg atoms or ions, and two-

dimensional systems, TEBD is generally inefficient so newmethods are needed. TheMPOWII

method was developed by Zaletel et al. to address this problem by exploiting the MPO representa-

tion of the Hamiltonian. We consider a Hamiltonian

H =
∑
j
Hj,

whereHj are local operators that act only on a finite range of sites around site j. The traditional

Euler approximation for the time-evolution operator gives

U(δt) =
∑
n

(−i δt)
n!

Hn ≈ 1− i δt
∑
j
Hj +O(δt2)

with the factorial n! =
∏n

m=1m. There are on the order ofN2 terms in theO(δt2) contribution

fromH2 resulting in an error per site ofO(Nδt2). This makes studying large system sizes signifi-

cantly more difficult. Zaletel et al. propose an improved Euler step

U(δt) ≈ 1− i δt
∑
j
Hj − δt2

∑
j,k∈M

HjHk +O(Nδt2) +O(δt3) ≡ UII(δt) (A.9)

whereM is the set of sites j, k such thatHj andHk act at most on one common site, e.g., terms like

n̂j ⊗ n̂kσ̂xk are included while n̂jn̂j ⊗ n̂kn̂k is not in Eq. (1.6). While this has still an errorO(δt2),

the number of terms that are not included is on the order ofN, leading to an error that is constant

per site. A main advantage is that the operatorUII(δt) can be approximated by an efficient MPO

representation,WII(δt), making it easy to apply to anMPS. The error ofWII(δt) isO(δt3). This

is comparable to a straightforward implementation of a higher-order Trotter scheme for the TEBD
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algorithm previously discussed. There are details, e.g., on the construction ofWII(δt) not included

here—we refer the interested reader to the works of Zaletel et al. and Paeckel et al. for more thor-

ough reviews of the topic.

While these methods were discussed in the context of real time evolution, i.e., t ∈ R, this can be

straightforwardly generalized for imaginary time evolution where t is a negative imaginary number.

Under this conditionU(t) is no longer unitary and the norm of the state is not preserved by the

transformation. This can be circumvented by explicitly normalizing the state. This is important

when dealing with imaginary time evolution which we employ to calculate thermal expectation

values.

A.1.4 Density-matrix Renormalization Group

Besides dynamic properties of the quantum chains, we are also interested in their low-energy physics,

i.e., the ground state. A powerful tool for these systems is the density-matrix renormalization group

(DMRG) which was first introduced byWhite. It is a variational method that iteratively performs

updates to the local matrices A[k],ik in Eq. (A.2) to minimize

⟨ψ|H|ψ⟩,

i.e., the energy of the state |ψ⟩. It has been very successful in the context of one-dimensional, local

Hamiltonians with a finite gap.

Assume that |ψ⟩ is in mixed canonical form at site i such that

|ψ⟩ =
∑

j1,...,jN

L[1],j1 . . .L[i−1],ji−1ΛiR[i],ji . . .R[N],jN (A.10)

where L[k],jk are the left-canonical matrices at site k = 1, . . . , i− 1 andR[k],jk are the right-canonical
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matrices at site k = i, . . . ,N. We then define the two site tensor

Θji,ji+1
αi,αi+2 =

∑
α′i ,αi+1

Λαi,α′iR
[i],ji
α′i ,αi+1

R[i+1],ji+1
αi+1,αi+2

which defines the reduced density matrix on sites i, i+ 1 as

(
ρi,i+1

)ji,ji+1,j′i ,j′i+1

αi,αi+2,α′i ,α′i+2

=
∑
αi,αi+2

Θji,ji+1
αi,αi+2

(
Θj′i ,j′i+1

αi,αi+2

)∗
.

Next we define the effective Hamiltonian acting on this reduced density matrix using the MPO

representation of the Hamiltonian

(
Heff

)ji,ji+1,j′i ,j′i+1

αi,αi+2,α′i ,α′i+2

=∑
j1,...,ji−1,ji+2,...,jN
j′1,...,j′i−1,j′i+2,...,j′N

∑
α1,...,αi−1,αi+3,...,αN
α′1,...,α′i−1,α′i+3,...,α′N

∑
β1,...,βN+1

(
L[1],j1
α1 L[2],j2

α1,α2 . . .L
[i−1],ji−1
αi−1,αi R[i+2],ji+2

αi+2,αi+3 . . .R
[N−1],jN−1
αN−1,αN R[N],jN

αN

)

·
(
vL,β1W

[1],j1,j′1
β1,β2

. . .W[i],ji,j′i
βi,βi+1

. . .W[i+1],ji+1,j′i+1
βi+1,βi+2

. . . . . .W[N],jN,j′N
βN,βN+1

)
·
(
L[1],j′1
α′1

L[2],j′2
α′1,α′2

. . .L[i−1],j′i−1
α′i−1,α′i

R[i+2],j′i+2
α′i+2,α′i+3

. . .R[N−1],j′N−1
α′N−1,α

′
N

R[N],j′N
α′N

)∗
. (A.11)

DMRG performs an update on that state of sites i and i + 1 by reshapingHeff into a square matrix

with indices (ji, ji+1, αi, αi+2) and (j′i, j′i+1, α′i, α′i+2). From the construction of this effective Hamil-

tonian one can see that the energy expectation value of the Hamiltonian is

⟨ψ|H|ψ⟩ = Tr
(
ρi,i+1Heff

)

per performing the necessary tensor contractions. The optimization step of DMRG then suggests

finding the ρi,i+1 that minimizes the energy, i.e., the ground state ofHeff which can be found ef-
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ficiently using exact diagonalization or Lanczos methods. The resulting vector corresponds to an

updated Θji,ji+1
αi,αi+2 which can be split into the single-site tensors using SVDs. DMRG performs sweeps

across the chain wherein the two-site tensors are iteratively optimized from site to site to minimize

the energy of the state |ψ⟩ in the hopes of converging to the ground state. We note that DMRG can

also be used to find low-energy excited states by projecting into the Hilbert space orthogonal to the

ground state.

While this procedure has been proven useful, there are some limitations: First the computational

complexity is limited by the size ofHeff which is a d2χ2 × d2 × χ2 matrix. For d = 2 and a reason-

able estimate for the bond dimension χ ∼ 1000, we find dim(Heff) = 4 × 106. Second the updates

on the state are only performed locally on sites i and i + 1 at a time. This can limit long-range en-

tanglement and correlations such that the state only converges to a local minimum, i.e., not the true

ground state ofH. This is especially important in the context of critical and near-critical ground

states which exhibit long-range entanglement and divergent correlation lengths. A method to pre-

vent this limitation is to introduce small perturbations to the wavefunction for the first few sweeps

to avoid convergence to a local minimum. In terms of numerical convergence, it is also noteworthy

that sweeps are performed until the energy has converged up to an error of δE = 10−8 with regard

to the maximum bond dimension of the MPS. For small gapped Hamiltonians, we found good con-

vergence with 50 sweeps. For the chains of size L = 2× 256 = 512 in Sec. 2.2 we needed up to 150

sweeps.

A.1.5 Minimally Entangled Typical Thermal States

In the previous two sections we have discussed methods to study dynamical and low-energy prop-

erties of the Hamiltonian. While the approach for performing real time evolution technically also

works for imaginary time evolution by choosing a negative imaginary time step, this is in practice
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limited to short time scales, i.e., the high-temperature regime. This is because the Gibbs state

ρβ =
exp (−βH)

Z

is generally a dense matrix for β > 0, i.e., we need an exponential number of coefficients in the

number of constituents to represent the state for sufficiently large β > 0. Z = Tr [exp (−βH)] is

the partition sum. However if one is only interested in expectation values of that state

⟨Ô⟩β = Tr
(
ρβÔ
)

there are efficient sampling methods to approximate this value. One such approach are based on

minimally entangled typical thermal states (METTS) which were first introduced by Stoudenmire

&White. Starting from the expectation value that we want to estimate, we find

⟨Ô⟩β =
1
Z
∑
i
⟨i|e−βH/2Ôe−βH/2|i⟩

=
1
Z
∑
i
pi⟨φi|Ô|φi⟩ (A.12)

where {|i⟩} are a complete basis and we define

|φi⟩ =
1

√pi
e−βH/2|i⟩

with pi = ⟨i|e−βH|i⟩. By sampling |φi⟩with probability pi/Z we can approximate ⟨Ô⟩β. While

the choice for the basis |i⟩ is not unique, the computational basis is a natural choice because they are

not entangled and are expected to produce states |ψi⟩with low entanglement for small β. It is also

noteworthy that the {|φi⟩} resemble typical states for this choice: at high temperatures they behave

classical and at low temperatures they can exhibit spontaneous symmetry breaking, in line with the
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expected behavior of the Gibbs state. This provides an intuitive explanation for the name minimally

entangled typical thermal states.

The sampling algorithm is a random walk through the set of METTS as introduced by Stouden-

mire &White:

1. Choose a (random) computational basis state |i⟩.

2. Compute the correspondingMETTS |φi⟩ = e−βH/2|i⟩/√pi.

3. Calculate ⟨φi|Ô|φi⟩.

4. Collapse |φi⟩ to a new state in the computational basis |j⟩with probability p(i → j) =

|⟨j|φi⟩|
2 and return to step 2.

This procedure ensures that the distribution samples with the correct probability pi/Z because

the probability to obtain |j⟩ is

∑
i

pi
Z
p(i → j) =

∑
i

pi
Z
|⟨j|φi⟩|

2 =
∑
i

pi
Z

|⟨j|e−βH/2|i⟩|2

pi

=
∑
i

⟨j|e−βH/2|i⟩⟨i|e−βH/2|j⟩
Z

=
⟨j|e−βH|j⟩

Z
=

pj
Z
.

This is a consequence of detailed balance p(i → j)/p(j → i) = pj/pi. Two advantages of the above

mentioned sampling algorithm is that every sample is used to estimate ⟨Ô⟩β and that it can be easily

parallelized. To perform the imaginary time evolution to go from |i⟩ to |φi⟩we use the previously

discussedMPOWII method (cf. Sec. A.1.3). The entanglement grows sufficiently slowly for the

imaginary time evolution of computational basis states making this algorithm suitable for obtaining

correlations for low-temperature Gibbs states in Ch. 2.

As pointed out by Stoudenmire &White the freedom to choose any complete basis for the states

|i⟩ can be used to optimize the convergence of this algorithm. It turns out that ergodicity of the
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samples can be improved by alternating between two different bases, e.g., the σ̂z and σ̂x eigenstates.

Assuming that |iz⟩ is a state in the z-basis, we collapse |φz
i⟩ to a state |j

x⟩ in the x-basis and vice versa.

This leads to a significant reduction in the autocorrelation time such that expectation values of |φi⟩

approach thermal values after 5–10 samples in practice. The results in Ch. 2.2 converged for 2000

total samples where we excluded the first 5 samples in each sampling procedure. A downside of this

method is that sampling small expectation values requires a larger amount of samples in general—

given the exponential decay of correlations for the finite-temperature states that we consider, this is

indeed a limitation at sufficiently large temperatures.

Numerical Resources forMatrix Product States

All numerical results in the main body were obtained using matrix product state simulations. Here

we want to comment on the numerical resources that were required to obtain the results. We ac-

knowledge and thank the Harvard Odyssey cluster for providing these resources.

In Ch. 1 we mainly used the MPOWII method to simulate quantum chains out of equilibrium.

The run times for the simulations with system sizeN = 37 (cf. Figs. 1.4 and 1.5) are roughly 5000

core hours. ForN = 24 (cf. Fig. 1.6) we needed approximately 1500 core hours to reach the re-

quired time scales. This means that generating Fig. 1.6 took 60000 core hours. This estimate comes

from the 40 runs, each of which were performed in parallel.

The numerical calculations in Ch. 2 include both a DMRG, the MPOWII method andMETTS.

The low-energy calculations took up to 1500 core hours to obtain the ground state and gap for

L = 256—however the run time is significantly lower at smaller system sizes. We note that the chain

is a total length of 2L due to the ladder configuration. Similarly the imaginary time evolution for

the exact TFD state took up to 1000 core hours—this failed to reach the required system sizes how-

ever, so we instead turned toMETTS to obtain thermal expectation values. The longest METTS

simulation took 10000 core hours for L = 256 and inverse temperature β = 7.5. Due to efficient
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parallelization we were able to perform 500 sampling procedures in parallel such that the total time

was less than two days.

A.2 Free FermionMapping for the Transverse-Field IsingModel

While matrix product states have opened new possibilities for studying quantummany-body sys-

tems, they are still limited by the inherent growth of entanglement in the system. This is particularly

true for nonintegrable models that are generally expected to exhibit ergodic dynamics as we will

discuss in App. B. However this is not necessarily the case for integrable models because dynam-

ics reduce to single particles—for a discussion of why that is the case, we refer to the corresponding

section in App. B. The work of Surace & Tagliacozzo provides a detailed review of the numerical

methods.

The spin- 12 transverse-field Ising model (TFIM) in one dimension is a paradigmatic model that

allows studying dynamics for large system sizes and long times because it can be mapped to free, i.e.,

noninteracting, fermions. We consider the Hamiltonian of a TFIM arranged in a chain of lengthN

HTFIM =

N∑
i=1

λi
(
Jσ̂xi ⊗ σ̂xi+1 +Ωσ̂zi

)
(A.13)

where we assume open boundary conditions (σ̂x0 = σ̂xN+1 = 0) and a spatial modulation λi ∈ [0, 1]

as in Ch. 1. Up to a unitary rotationU =
∏

i exp(−iπσ̂y/4) this can be mapped to a Rydberg atom

array for a specific choice of parameters as we discuss in App. C.

The Jordan-Wigner transformation allows a way of solving this model by mapping it to fermions.

We introduce the fermionic annihilation and creation operators ĉi and ĉ†i , where † stands for the

Hermitian conjugate. These obey the canonical anticommutation relations {̂ci, ĉ†j } = δij, {̂ci, ĉj} =
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0. Let ηi = exp(−iπ
∑

j<i ĉ
†
j ĉj) be the Jordan-Wigner string and identify the following operators

σ̂+i = ηîc
†
i

σ̂−i = ηîci (A.14)

where σ̂+i = (σ̂xi + σ̂yi )/2 and σ̂
−
i = (σ̂xi − iσ̂yi )/2 are the raising and lowering operators of the spins.

Then we can identify

σ̂xi = σ̂+i + σ̂−i = ηi(̂ci + ĉ†i )

σ̂zi = 1− 2σ̂+i σ̂
−
i = 1− 2̂c†i ĉi. (A.15)

Plugging this into Eq. (A.13) we get

HTFIM =
N∑
i=1

λi
(
J(̂c†i − ĉi)(̂c†i+1 + ĉi+1) + g(1− 2̂c†i ĉi)

)

by using ĉi exp(iπĉ†i ĉi) = ĉi(1−2̂c†i ĉi) = −ĉi and ĉ†i (1−2̂c†i ĉi) = −ĉ†i and open boundary conditions

(̂cN+1 = ĉ†N+1 = 0). Up to a constant term that can be discarded the Hamiltonian takes the form

HFF =

N∑
i=1

λi
[
J
2
(̂c†i ĉi+1 + ĉ†i+1̂ci − ĉi+1̂c†i − ĉîc†i+1 + ĉ†i ĉ

†
i+1 − ĉ†i+1 + ĉi+1̂ci − ĉîci+1) +Ω(̂cîc†i − ĉ†i ĉi)

]
=
∑
i,j

hi,j(̂c†i ĉi − ĉîc†i ) + ki,ĵc†i ĉ
†
j + k∗i,ĵcîcj, (A.16)

where we introduce the block matrices h and k such that

hi,i = −λiΩ, hi,i+1 = hi+1,i = λi
J
2

ki,i+1 = λi
J
2
= −ki+1,i.
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Eq. (A.16) is a quadratic fermionic Hamiltonian which we can rewrite as

HFF =

(⃗
c† c⃗

) h k

−k −h


 c⃗

c⃗†


where c⃗ = (̂ci, . . . , ĉN) and c⃗† = (̂c†i , . . . , ĉ

†
N). Since h and k areN × Nmatrices with real coeffi-

cients, they can be efficiently stored on a classical computer and solved using exact diagonalization

for system sizes exceedingN ∼ 1000. An intuitive explanation for why this works is that the dy-

namics reduce to particles traveling through the chain without scattering—in analogy to classical

systems this problem is much easier to solve than if the particles had interactions leading to elastic or

inelastic collisions.

To solve for the dynamics of the fermions, we consider the time evolution of the fermionic opera-

tors. This is governed by the Heisenberg equation of motion

∂

∂t
Â = i

[
HFF, Â

]
(A.17)

for any operator Â. We plug the fermionic operators into this equation and use [ÂB̂, Ĉ] = A{B̂, Ĉ}−

{Â, Ĉ}B̂ for any three operators Â, B̂, and Ĉ. We obtain

∂

∂t
ĉi = i [HFF, ĉi]

= i
[
λi−1J(̂c†i−1 − ĉi−1)− λi2Ωĉi + λiJ(̂c†i+1 + ĉi+1)

]
(A.18)
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for the annihilation operator ĉi and

∂

∂t
ĉ†i = i

[
HFF, ĉ†i

]
= −i

[
λi−1J(̂ci−1 − ĉ†i−1)− λi2Ωĉi + λiJ(̂ci+1 + ĉ†i+1)

]
=

(
∂

∂t
ĉi
)†

(A.19)

for the creation operator ĉ†i . This corresponds to 2N linear coupled differential equations of the

form

∂

∂t

 c⃗

c⃗†

 = i

 α β

βT −α


 c⃗

c⃗†


with A ≡

 α β

βT −α


which has the solution  c⃗(t)

c⃗†(t)

 = ei A t

 c⃗(0)

c⃗†(0)


for the initial operators (⃗c(0), c⃗†(0)). We note that βT stands for the transpose of the matrix β. The

elements of the block matrices α and β are

αi,i = λi2Ω, αi,i+1 = αi+1,i = −λJ

βi,i+1 = −λiJ = −βi+1,i.

85



The time-evolved operators then take the form

ĉi(t) =
∑
j

Λi,j(t)̂cj(0) + Γi,j(t)̂c†j (0) (A.20)

ĉ†i (t) =
∑
j
Γ∗i,j(t)̂cj(0) + Λ∗

i,j(t)̂c
†
j (0) (A.21)

where we introduced the time evolution block matrices Λ(t) and Γ(t) such that

eiAt =

Λ(t) Γ(t)

Γ∗(t) Λ∗(t)

 .

We can use Wick’s theorem to evaluate expectation values for correlation functions of the form

⟨GS|ÂB̂|GS⟩

where Â and B̂ are operators and |GS⟩ is the ground state with ĉi(0)|GS⟩ = 0 for all i = 1, . . . ,N.

UsingWick’s theorem we find

⟨GS|̂ci(t)†cj(t)|GS⟩ = (Γ∗ΓT)ij(t)

⟨GS|̂ci(t)cj(t)†|GS⟩ = (ΛΛ†)ij(t)

⟨GS|̂ci(t)†cj(t)†|GS⟩ = (Γ∗Λ†)ij(t)

⟨GS|̂ci(t)cj(t)|GS⟩ = (ΛΓT)ij(t). (A.22)
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We can use this to calculate expectation values of the local energy density operator (cf. Eq. (1.9))

ĥi =
J
2
(
λiσ̂xi ⊗ σ̂xi+1 + λi−1σ̂xi−1 ⊗ σ̂xi

)
+ λiΩσ̂zi

=
J
2

[
λi(̂c†i ĉi+1 + ĉ†i+1 + ĉ†i ĉ

†
i+1 + ĉi+1̂ci)

+ λi−1(̂c†i−1̂ci + ĉ†i + ĉ†i−1̂c
†
i + ĉîci−1)

]
+ λiΩ(1− 2̂c†i ĉi). (A.23)

A significant limitation to this procedure is that the ground state |GS⟩ in Wick’s theorem is given

by the ground state of the fermionic operators ĉi. It turns out that this can be generalized to the

ground state of an TFIMwith any choice of parameters J,Ω in Eq. (A.13). The fermionic operators

corresponding to the ground state |GSb⟩ are b̂i, b̂†i . Then there exists a unitary mappingV connect-

ing the two sets such that

(⃗
c c⃗†

)
(0) =

α β

γ δ

(b⃗ b⃗†
)
(0).

It turns out that the time evolution operator changes as

A(t)′ ≡ A(t)V =

Λ(t) Γ(t)

Γ∗(t) Λ∗(t)


α β

γ δ

 ≡

ν(t) θ(t)

ζ(t) χ(t)

 .

Finally we just plug this into Eq. (A.22) to obtain the new result.

We used this method to perform conformal cooling in the transverse-field Ising model where we

can reach system sizes up toN ≈ 1000 with reasonable run times of a few minutes on a commercial

laptop. For more details we refer to App. D.
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B
Thermalization in Closed Quantum

Systems

Thermalization is a process that one encounters regularly in their day-to-day life. To enjoy a cold,

refreshing beverage on a warm summer day, one may put it in the refrigerator to cool it down. This

empirical observation that physical system tend to equilibrate with their environment is a remark-

able feature of statistical physics that is encapsulated by the second law of thermodynamics57: heat
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flows from high-temperature to low-temperature regions. While there exist a lot different formu-

lations of the second law of thermodynamics, they all share this property. This process describes

well howmacroscopic systems, e.g., a hot cup of tea, thermalize with their environment. The steady

state has a uniform temperature which is determined by energy conservation of the entire system.

One implication of the second law of thermodynamics is that the entropy of the entire system in-

creases for spontaneous processes which essentially breaks time reversibility. While the process of

thermalization is fairly well understood on a macroscopic scale, its microscopic nature in particular

in quantummechanical systems remains an open question.

A detailed review of thermalization in closed quantum systems would be beyond the scope of

this thesis—instead we want to provide a practical perspective on arguments for thermalization

in quantummany-body models with a focus on the eigenstate thermalization hypothesis (ETH).

We will also comment on the role of integrability. For a more thorough review and more detailed

analysis we refer the reader to the review article by D’Alessio et al. which acted as the basis for this

appendix.

Thermalization in Classical Systems

Before we discuss nonequilibrium dynamics of isolated quantum systems it may be useful to give a

short overview of thermalization in classical systems. A key feature is the ergodic hypothesis which

states that the state of the system visits every point in phase space, that is compatible with constraints

on the system, e.g., energy conservation, with equal probability for sufficiently long times. Chaos

plays an intricate role in this process and is deemed an essential ingredient—meaning that a small

perturbation to the initial condition can lead to arbitrarily large deviations at later times.

One thing to note is that adding an extensive number of constraints will generally result in er-

godicity breaking because only a small subspace is accessible for the dynamics. It turns out that this
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holds both in the classical and the quantum setting where we discuss it in the context of integrabil-

ity.

The equal probability sampling of the phase space implies that the long-time averages of observ-

ables give a good estimate of microcanonical expectation values which are used for isolated systems.

Strictly speaking the time scale to explore the entire compatible phase space grows exponentially in

the degrees of freedom, implying that macroscopic thermalization may be an extraordinarily diffi-

cult process—of course empirical evidence suggests the opposite. A way to resolve this is by consid-

ering that there are typical states which make up the majority of the phase space and give roughly

the same expectation value. For instance it is much more likely thatN particles are uniformly dis-

tributed in a box than all of them ending up in one half and none in the other. This leads to the

expected behavior that systems tend to thermalize quickly, as it is much more likely that the system

evolves to a typical state resulting in the expected behavior. While the Poincaré recurrence theorem

predicts the state will always return to a point in phase space which is arbitrarily close to the initial

state, this also takes exponentially long and has little effect on the time averages of expectation values

which are dominated by typical states.

Closed QuantumQystems

Ultimately we are interested in the nonequilibrium dynamics of closed quantum systems and their

behavior at long times. For this purpose we consider the Schrödinger equation which governs the

time evolution of closed quantum system under a time-independent HamiltonianH

∂

∂t
|ψ(t)⟩ = −iH|ψ(t)⟩. (B.1)
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This is a linear differential equation for the state |ψ(t)⟩. The solution is simply given by

|ψ(t)⟩ = e−iHt|ψ(0)⟩, (B.2)

where |ψ(0)⟩ is the initial state of the system andU(t) ≡ e−iH t is unitary. It is interesting to note

that the Schrödinger equation lacks nonlinearity which is an essential ingredient for chaos in clas-

sical systems. While two trajectories in phase space which are initially close together will generically

diverge, this is not true for quantum states. In fact, their overlap remains unchanged throughout the

evolution

|⟨φ(t)|ψ(t)⟩| = |⟨φ(0)|U†(t)U(t)|ψ(0)⟩| = |⟨φ(0)|ψ(0)⟩|

whereU†(t) = U−1(t) is the Hermitian conjugate of the unitary matrixU(t). Therefore, the tra-

jectory of the quantum state is not a suitable analog of trajectories in phase space to probe chaotic

dynamics. Therefore we need a different notion to describe chaotic quantum system as the classical

description fails.

It turns out that it is useful to study howmuch a quantum state is delocalized in energy space,

i.e., in terms of the eigenstates of the Hamiltonian, to resolve this problem. The energy eigenstates

fulfill

H|n⟩ = En|n⟩

with En ∈ R such that its time evolution under the Schrödinger equation becomes trivial

|n(t)⟩ = e−iEnt|n(0)⟩.

91



Effectively these states only pick up a phase and remain stationary otherwise. The set of energy

eigenstates forms a complete basis of the Hilbert space,
∑

n |n⟩⟨n| = I such that we can decom-

pose any state as a linear combination of {|n⟩}

|ψ⟩ =
∑
n

cn|n⟩.

Here cn = ⟨n|ψ⟩ ∈ C are complex coefficients and we require
∑

n |cn|2 = 1. The same holds for

density matrices ρwhich evolve as

∂

∂t
ρ = −i[H, ρ] (B.3)

according to the von Neumann equation. In terms of the energy eigenstates the time-evolved den-

sity matrix becomes

ρ(t) =
∑
m,n

ei(En−Em)tρnm(0)|n⟩⟨m| (B.4)

where ρnm = ⟨n|ρ|m⟩. Since we are interested in the long-time dynamics, we study the density

matrix averaged over late times

ρ̃ = lim
t→∞

1
t

∫ t

0
ρ(t′)dt′ =

∑
n

ρnn|n⟩⟨n|

which is referred to as the diagonal ensemble. We would expect that this approximates microcanoni-

cal expectation values if the system thermalizes. A key insight is that this diagonal ensemble must be

delocalized over the energy eigenstates for this to occur. This is motivated by the prediction that the

energy eigenstates are effectively random for nonintegrable models, such that they take the role of

the typical states that were considered in the classical setting. We note that this is a very subtle topic
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but generally, and in particular for nonintegrable models, we expect the bulk of the energy eigen-

states to be well described by randommatrix theory. In analogy to a classical system, a quantum

state thermalizes if it is delocalized across the spectrum.

There is a caveat to this line of thought however: under unitary evolution, such as the Schrödinger

equation, a pure state will always remain pure. Therefore it is not immediately clear whether the

argument concerning the diagonal ensemble still applies, as thermal states are described by mixed

states. It turns out that this can understood in the context of the eigenstate thermalization hypoth-

esis which provides a formal framework to study this topic. A key result is that, while the whole

systemmay not thermalize, subsystems thermalize with the rest of the system such that expectation

values of few-body observables approach thermal results.

Eigenstate ThermalizationHypothesis

We consider the evolution of some observable Ô in the basis of the Hamiltonian’s eigenstates

⟨ψ(t)|Ô|ψ(t)⟩ =
∑
n,m

c∗ncmei(En−Em)t⟨n|Ô|m⟩

=
∑
n

|cn|2Onn +
∑
n,m
n̸=m

c∗ncmei(En−Em)tOnm (B.5)

whereOnm = ⟨n|Ô|m⟩ and we used the decomposition of the state |ψ(t)⟩ from Eq. (B.3). Requir-

ing that the observable thermalizes, corresponds to the time average of this observable approaching

the microcanonical prediction and fluctuations around that value to be small for late times. In the

long-term average we would expect that the second term in Eq. (B.5) vanishes assuming a nonex-

tensive number of degeneracies. Again, only the diagonal terms remain which is remiscent of the

diagonal ensemble. A similar problem prevails however because the energy eigenvalues En are expo-

nentially close together, so it may take exponentially long for the temporal average to vanish—this
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time scale is also known as theHeisenberg time9,40. This is again in conflict with our expectation

that systems thermalize relatively quickly.

The eigenstate thermalization hypothesis resolves this problem by making a particular ansatz for

the matrix elements of the operator Ô. The matrix elements of the operator Ô take the form (cf. Eq.

(2.5))

Onm = δnmO(En) +
1√
ρ(Ē)

ξO(Ē, ω)Rnm. (B.6)

Here δnm is the Kronecker delta,O(En) is a smooth function of the energy En and ρ(E) is the den-

sity of states at energy E. Rij are elements of a randommatrix with mean zero and unit variance.

ξO(Ē, ω) is a smooth function of the average energy Ē = (En + Em)/2 and the energy difference

ω = En − Em. Rnm are often taken to be Gaussian random variables. CruciallyO(E) is identical to

the microcanonical expectation value at energy E.

Assuming validity of the ETH, it is easy to see from Eq. (B.5) that

Ō = lim
t→∞

1
t
⟨ψ(t)|Ô|ψ(t)⟩ =

∑
n

|cn|2Onn ≈ O(E)
∑
n

|cn|2 = O(E), (B.7)

i.e., the long-time average approaches the microcanonical value. In practice this value is approached

rapidly as the offdiagonal matrix elements average to 0 even in the presence of high degeneracy due

to the form ofRnm. An interesting feature is that this result does not make assumptions regarding

the form of the coefficients cn. It only relies on properties of the energy eigenstates which encode a

notion of ergodicity and typicality in the model.

While the ETH ansatz is motivated by randommatrix theory, there is no universal understand-

ing when this applies and when it fails. There is also no encompassing theory for the thermalization

time of an observable. It is generally believed that it holds for all physical observables and that the
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equilibrium value is approached relatively quickly. It is known however that the ETH fails for inte-

grable models, which we will be the focus of our discussion in the following section.

Thermalization in IntegrableModels

While the definition of integrability in quantum system is a subtle topic and still actively being dis-

cussed, following D’Alessio et al. we assume models to be integrable if they are subject to an exten-

sive number of local conservation laws. For every such constraint there exists a local operator that

commutes with the Hamiltonian. Every such operator corresponds to a conserved quantity, also

known as the charge. The Hamiltonian,H, must then preserve each charge meaning that

⟨p|H|q⟩ = 0

where |p⟩, |q⟩ are states with different charges (p ̸= q). This means that the Hamiltonian factor-

izes into disconnected blocks for each set of conserved properties. The defining feature is that the

conserved quantities must be local. Trivially the Hamiltonian commutes with the projectors into

each energy eigenstate resulting in an extensive number of conserved quantities which are however

highly nonlocal. As an illustration a commonly encountered conserved quantity is the momentum

for translation-invariant models, e.g., for periodic boundary conditions. |p⟩would then corresponds

to a state with momentum eigenvalue p.

To find the steady state that describes the system’s average long-term dynamics, we consider the

state that maximizes the entropy subjected to the constraints—this is an implicit result from the

second law of thermodynamics. As previously discussed, in the case of a few conserved quantities,
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e.g., energy or momentum, this results in a Gibbs ensemble

ρGE =
exp(−βH)

Tr (exp(−βH))
,

where β is the inverse temperature of the state which determines the energy of the Gibbs ensemble.

However for an extensive number of constraints, one finds that the state maximizing the entropy is

instead a generalized Gibbs state

ρGGE =
exp(−

∑
j βjHj)

Tr
(
exp(−

∑
j βjHj)

) ,
whereHj are the conserved operators and βj are parameters determined by the expectation value of

ρGGE.

A plethora of integrable quantummodels have been discovered including the spin- 12 transverse-

field Ising model and the spin- 12 anisotropic Heisenberg model under certain conditions. These

can be mapped to fermionic models using the Jordan-Wigner transformation with the resulting

fermions exhibiting no interactions or specific interactions that factorize into two-body scattering.

This means that the dynamics of the system can be reduced to single particles traversing the system

with elastic collisions between them. This is a key difference to nonintegrable models where the

collisions are inelastic leading to dispersion of energy between the individual degrees of freedom. We

point out that the discussed properties manifest in the energy eigenstates leading to the failure of

the ETH.Models close to integrablility can still exhibit traces of integrability leading to nonthermal

behavior.
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C
Mapping the Rydberg Atom Array

Hamiltonian to a Spin- 12 Model

The Hamiltonian in Eq. (1.6) can easily be mapped to a spin- 12 model by exploiting that the Hamil-

tonian of any two-level system can be rewritten in terms of Pauli operators up to an irrelevant con-

stant. The highly excited Rydberg state, |r⟩, and the electronic ground state, |g⟩, form the two-level
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system. We map the two spin- 12 states to the Rydberg states in the following way:

|g⟩ → |↓⟩ (C.1)

|e⟩ → |↑⟩. (C.2)

For the number operator n̂ in Eq. (1.6) we find that

n̂ =
σ̂z + I
2

(C.3)

where σ̂z is the Pauli-z operator. We plug this result into the Rydberg atom array Hamiltonian and

subsequently obtain

H =
∑
i<j

C
r6ij

σ̂zi + I
2

⊗
σ̂zj + I
2

+
∑
i

(
Ω
2
σ̂xi − Δ

σ̂zi + I
2

)

=
∑
i<j

1
4
C
r6ij
σ̂zi ⊗ σ̂zj +

∑
i

(
Ω
2
σ̂xi −

Δ
2
σ̂z
)
+
∑
i<j

1
4
C
r6ij
(σ̂zi + σ̂zj ) + const, (C.4)

where we discarded a constant term in the second line. Note that any summation over the indices i, j

implies that we sum from i, j = 1, . . . ,N unless explicitly stated otherwise. We use that
∑

i<j =
1
2
∑

i̸=j
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to simplify

∑
i<j

1
4
C
r6ij
(σ̂zi + σ̂zj )

=
1
2
∑
i

C
4

 i−1∑
j=1

1
r6ij

+

N∑
j=i+1

1
r6ij

 σ̂zi

+
1
2
∑
j

C
4

 j−1∑
i=1

1
r6ij

+
N∑

i=j+1

1
r6ij

 σ̂zj

=
∑
i

C
4

 N∑
j=1
j̸=i

1
r6ij

 σ̂zi .

From the second to the third step the trick is identifying that the second and third line are identical

up to exchange of i and j due to rij = rji. Combining this result with the rewritten terms in Eq.

(C.4) we arrive at

H =
∑
i<j

1
4
C
r6ij
σ̂zi ⊗ σ̂zj +

∑
i


Ω
2
σ̂xi +


C

4

N∑
j=1
j̸=i

1
r6ij

− Δ
2

 σ̂zi

 . (C.5)

In the limit of nearest-neighbor interactions, this corresponds to a mixed-field Ising model of the

form

HMFIM =
∑
i

(
J zσ̂zi ⊗ σ̂zi+1 + hxσ̂xi + hzσ̂zi

)
.
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Here we can identify the corresponding coefficients

J z =
1
4

C
r6i,i+1

hx =
Ω
2

hz =
C
2

1
r6i,i+1

− Δ
2
=

1
2
(J− Δ) (C.6)

in the case of periodic boundary conditions and for J ≡ C/a6 with the interatomic distance a. For

open boundary conditions, hz1,N = J/4 − Δ/2 because the edge spins only have one nearest neigh-

bor. Of course, this constitutes a finite-size effect. Most importantly, the mixed-field Ising model is

nonintegrable in general, meaning that it is not exactly solvable. For hz = 0 the model simplifies

to the transverse-field Ising model which can be solved using the Jordan-Wigner transformation,

resulting in a quadratic fermionic Hamiltonian (cf. App. A.2).
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D
Scaling of Overcooling in the Critical

Transverse-Field Ising Model

While it is numerically challenging to scale the chain lengths in the case of the Rydberg blockade

Hamiltonian, we can use the spin- 12 transverse-field Ising model (TFIM) as a paradigmatic model to

study overcooling for large systems. While there are fundamental differences in these two models—

integrability being one of them—, they share the same low-energy description at the critical point
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between the paramagnetic and antiferromagnetic phases68. It is also noteworthy that Eq. (1.6)

reduces to the transverse-field Ising model for Δ = J (cf. Eq. (C.6)). This motivates us to study

conformal cooling quenches for the TFIM. The Hamiltonian is given by

HTFIM = J
N−1∑
i=1

σ̂xi ⊗ σ̂xi+1 +Ω
N∑
i=1

σ̂zi , (D.1)

where σ̂α (α ∈ {x, y, z}) are the Pauli spin- 12 matrices. For |J| ≪ |Ω| the ground state is paramag-

netic due to the spins aligning with the magnetic field in the z-direction. |J| ≫ |Ω| leads to antifer-

romagnetic order in the ground state for J > 0 and ferromagnetic order for J < 0. There is a critical

point separating these two phases at |J| = |Ω|which is described by the 2D Ising CFT68. Slagle

et al. find that this matches the CFT description of the critical point in the 1D Rydberg blockade

model and show agreement in the low-energy spectrum of both models.

Eq. (D.1) can be mapped to free fermions using the Jordan-Wigner transformation73, i.e., the

model is integrable and has an extensive number of conservation laws. The dynamics can be reduced

toN noninteracting particles which can be simulated efficiently73.

In analogy to Eq. (1.8) we consider spatial modulations of Eq. (D.1)

H =
N−1∑
i=1

λiσ̂xi ⊗ σ̂xi+1 +
N∑
i=1

λiσ̂zi , (D.2)

where 0 < λi ≤ 1 is the spatial modulation and we choose J = Ω = 1 corresponding to the

critical point between the paramagnetic and the antiferromagnetic phase. The spatial modulation of

the Hamiltonian does not affect integrability so we can solve this Hamiltonian for large system sizes

and long times using exact diagonalization—for numerical details we refer to App. A.2. Again, we

consider long and shallow ramps with a slope α = 1.25×10−3. We choose this slope to be so small,

so we can go to system sizes between 100 and 1000 sites without violating the constraint 0 < λi ≤ 1.
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Figure D.1: Scaling of overcooling in the transverse‐field Ising model for increasing system sizesNS at a fixed system‐
ramp ratioNR/NS = 10 and ramp slope α = 1.25×10−3. a) The average energy density in the system shows lower
minima as the ramp size is increased. We observe saturation in the minimum beyondNS ≳ 80. b) The optimal amount
of cooling, mint(εS(t)), indeed saturates for large ramps, suggesting that overcooling can only remove a certain amount
of energy.

We choose an easy-to-prepare initial state, a ground state in the paramagnetic region but close to

the critical point (J = −0.8 and Ω = 1), with an initial temperature that is similar to the ones

considered in Ch. 1 (Ti ∼ 5 in units of Ω).

We follow a similar procedure to the previous section: First, we fix the system sizeNS = 10 and

sweep the size of the ramp fromNR = 10 toNR ∼ 100. We observe significant overcooling in all

of these cases and find an optimal system-ramp ratio ofNR/NS = 10 beyond which there is little

improvement in cooling.

Fig. D.1a) shows the average energy density in the system, εS, as a function of time as the system

size is increased fromNS = 10 to 75—note that the ramp size is appropriately scaled to main-

tainNR/NS = 10. The definition for εS is completely analogous to the previous sections. We see

qualitatively similar dynamics to the quenches at the Rydberg critical point for long and shallow
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ramps: the energy in the system decreases rapidly before reabsorbing most of the emitted energy

immediately afterwards. For larger chains the time to reach the minimum increases as one would

expect. In Fig. D.1b) we plot the minimum of εS as a function of the system size. While there is a

large improvement in the amount of cooling for smaller systems, this does not persist and satura-

tion becomes evident in the thermodynamic limit. This underlines our finding that overcooling is

a finite-size effect that does not provide an advantage over the thermodynamic expectation in the

thermodynamic limit.
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