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We show that locally interacting, periodically driven (Floquet) Hamiltonian dynamics coupled to a
Langevin bath support finite-temperature discrete time crystals (DTCs) with an infinite autocorrelation time.
By contrast to both prethermal and many-body localized DTCs, the time crystalline order we uncover is
stable to arbitrary perturbations, including those that break the time translation symmetry of the underlying
drive. Our approach utilizes a general mapping from probabilistic cellular automata to open classical Floquet
systems undergoing continuous-time Langevin dynamics. Applying this mapping to a variant of the Toom
cellular automaton, which we dub the “π-Toom time crystal,” leads to a 2D Floquet Hamiltonian with a
finite-temperature DTC phase transition. We provide numerical evidence for the existence of this transition,
and analyze the statistics of the finite temperature fluctuations. Finally, we discuss how general results from
the field of probabilistic cellular automata imply the existence of discrete time crystals (with an infinite
autocorrelation time) in all dimensions, d ≥ 1.
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A tremendous amount of recent excitement has centered
upon interacting periodically driven (Floquet) “phases of
matter” [1–7]. While discussed as nonequilibrium phases,
thus far attention has largely focused on two scenarios
which are nonequilibrium only in a rather restricted sense.
First, there are quantum “many-body-localized” (MBL)
Floquet phases [2–4,8–11]. Because the ergodicity breaking
of MBL is sufficient to prevent the periodic drive from
heating the system to infinite temperature, the system does
not need to be coupled to a dissipative bath (e.g., the
dynamics are driven, but purely unitary) [12–14]. In this
case, the eigenstates of the Floquet evolution have area-law
entanglement, which allows much of the physics to be
mapped to more familiar questions of order in quantum
ground states [15–18]. Second, there are “prethermal”
Floquet phases, in both classical and quantum systems,
which heat exponentially slowly due to (for example) a
mismatch between the driving frequency and the natural
frequencies of the undriven system [19–28]. During the
exponentially long timescale before heating, these systems
can exhibit behavior which is analogous to order in finite
temperature equilibrium phases [20,24,26,27]. However,
prethermal Floquet phases are not “true” phases in the
strict sense because they are distinguished from disordered
behavior via crossovers, rather than sharp transitions [7].
Perhaps the most paradigmatic example of a Floquet

phase of matter is the so-called discrete time crystal

(DTC)—starting from a generic initial state, at long times
the DTC relaxes into a steady state with a temporal
periodicity which is a multiple of the drive’s [2–4]. This
behavior breaks the discrete time-translation symmetry of
the drive and is stable to small perturbations of the dynamics.
From the perspective of symmetry breaking, it is natural

to ask if “true” time crystals, with an infinite autocorre-
lation time, exist beyond many-body localized quantum
systems [29]; here, we emphasize that the lifetime of the
DTC order should diverge exponentially in the system
size as the thermodynamic limit is taken, while all other
parameters (i.e., Floquet frequency, temperature, etc.) are
kept fixed. Without an MBL phase to prevent heating, one
requires an alternate strategy to stabilize time crystalline
order; one approach that is compatible with both quantum
and classical many-body dynamics is to couple the system to
a dissipative bath [20,30–40].
Thinking microscopically, classical driven dissipative

systems are described by Hamiltonian dynamics coupled
to a finite-temperature Langevin bath, or in the quantum
case, periodically driven Lindblad evolution. A key feature
in both these contexts is that if the bath is dissipative, at
finite temperature it should also come with noise due to the
fluctuation-dissipation theorem. At zero temperature, where
there is damping but no noise, many-body time crystals can
occur rather trivially by analogy to the “period doubling” of
coupled iterated logistic maps [41–45]. By contrast, the
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presence of noise pushes the system to explore its entire
phase space and can therefore desynchronize any initial
time-crystalline behavior. This noise-induced ergodicity
leads to a finite lifetime for the DTC order. The key
question we will focus on is the following: Can true time
crystals exist in a periodically driven system of locally
interacting particles coupled to an equilibrium bath at finite
temperature?.
In this Letter, we argue in the affirmative: finite-

temperature time crystals [46,47], with an infinite auto-
correlation time, can exist even in translation-invariant
arrays of classical nonlinear oscillators interacting only
with their nearest neighbors. This significantly strength-
ens and extends upon prior works which found that arrays
of parametrically driven oscillators did not produce a
stable time crystal: thermal fluctuations led to an auto-
correlation time which was finite and activated [48].
Our results are threefold. First, we explain [49] how

nontrivial results in the field of probabilistic cellular
automatons (PCAs) [50,51] imply that local PCAs can
exhibit time-crystalline behavior stable to arbitrary small
perturbations in any dimension, d ≥ 1 [52–56]. UnlikeMBL
or prethermal time crystals, such time-crystalline order is
“absolutely stable,” in the sense that it remains robust even in
the presence of perturbations that break the discrete time-
translation symmetry of the periodic drive. Next, we extend
these PCA results to the physical setting of interest—
classical, continuous-time, Langevin dynamics. In particular,
we provide an explicit protocol which allows classical
Langevin dynamics to “simulate” any PCA; focusing on
the example of the so-called π-Toom PCA in 2D [54–56],
we find that our continuous-time Langevin simulation
indeed exhibits a finite-temperature phase transition between
a discrete time crystal and a disordered phase (Fig. 1).
Finally, we utilize results from “large deviations” theory to
analytically obtain a bound on the spatiotemporal error
cumulants; building on this bound, we perform an extensive
analysis of the errors due to Langevin noise and provide
numerical evidence that they are of a type covered by
rigorous mathematical results from Gács and Toom [52–56].
Time crystals in probabilistic cellular automata.— Each

state of a probabilistic cellular automata is given by a
particular configuration fηðxÞg, where x∈Λ labels sites in
a regular lattice Λ and each ηðxÞ takes values in a finite set
S. In a conventional cellular automaton (CA), the dynamics
are governed by a deterministic transition rule [79,80],

fηðx; tþ 1Þg ¼ T ½fηðx; tÞg�: ð1Þ

In a PCA, the dynamics are governed by a Markov process
described by the transition matrix Mη→η0 , which character-
izes the probability to evolve from configuration η
to η0 [81–83].
Whether a PCA can realize a stable time crystal is subtle.

The long-time dynamics of a PCA are described by the

stationary probability distributions P½η� of M, e.g.,
MP½η� ¼ P½η�. We say M exhibits an n-fold subharmonic
response if there are n > 1 distinct distributions, Pi½η�, such
that MPi½η� ¼ Piþ1½η�, with Pn ¼ P0. This simply formal-
izes the notion of long-time oscillations: at long times, a
generic initial state will relax into to a nonuniform convex
combination

P
i piPi which is stationary underMn, but not

M [84]. A PCA time crystal is then defined to be a local PCA
with a stable n-fold subharmonic response. This motivates
our first question: Do PCA time crystals exist [86]?
One prerequisite for a PCA time crystal is ergodicity

breaking. A PCA is “ergodic” if it has a unique stationary
distribution, so that at long times the state is independent of
the initial spin configuration. A time crystal necessarily
breaks ergodicity becauseMn has n stationary distributions,
so the system remembers which of the n states in the orbit it
is in. Ergodicity-breaking PCAs were first proved to exist in
2D by Toom [54,81], and much later in 1D by Gács [52].
We focus our discussions here on Toom’s model because of

(b)

(d)

(a)

(c)

FIG. 1. (a) Time crystalline order parameter (e.g., stroboscopic
magnetization) as a function of the error probability. The phase
transition from a discrete time crystal to the disordered phase is
shown for both a continuous-time, Floquet Langevin simulation
of the π-Toom model with pinning potential v ¼ 50, 100, as well
as for a direct implementation of the π-Toom PCA. We average
ð−1Þbt=τchMAi starting at t ¼ 3000 for ∼500 Floquet cycles, ∼50
noise realizations and system size N ¼ 32 × 32. (b),(c) Sche-
matic of the translation between the discrete state space of a
cellular automata and the continuous state space of a Hamiltonian
model. (d) Dynamics of the Langevin π-Toom model (v ¼ 100,
T ¼ 7), exhibiting robust period doubling (full line even times,
light dashed line odd times) with a lifetime that grows exponen-
tially with L [57]. We infer that for the system size (L ¼ 32)
considered in panel (a), the lifetime of the π-Toom time crystal
is significantly longer that the time window over which the
magnetization is averaged.
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its simplicity (a discussion of the Gács model in 1D is
provided in the Supplemental Material [57]). The Toom
model is a 2D PCAwith a binary state space, S ¼ f−1; 1g,
and a “majority vote” transition rule in the northern-eastern-
center (NEC) neighborhood N ¼ fð1; 0Þ; ð0; 1Þ; ð0; 0Þg
[each ðΔxi;ΔyiÞ∈N denotes the relative locations of the
cells in the neighborhood].
Crucially, in this model, it was proven that there are

two “phases” (i.e., stationary distributions), corresponding
to states “all þ1” and “all −1,” which are stable against
arbitrary stochastic perturbations below a critical error
rate ϵ [87], provided that the errors are not too corre-
lated [52,54,88]. This requirement can be encoded into an
error condition: there exists ϵ such that the probability of k
errors is bounded

P∧k
l¼1

Eul
¼

Yk
l¼1

PEul
jEul−1 ;…;Eu1

≤ ϵk; ð2Þ

where Eu denotes an “error” at a space-time point u, i.e.,
the dynamics did not follow the original update rule T .
Finally, a simple modification of the Toom PCA [49,89],

which we call the “π-Toom” model, immediately turns this
construction into a time crystal exhibiting an infinite
autocorrelation time [90]: in particular, instead of an
NEC majority vote, one utilizes an NEC antimajority vote,
or equivalently, one considers the Toom model with an
interleaved spin flip, 1 ↔ −1, between each step. In 1D, an
equivalent construction based upon the Gács model yields a
similar PCA time crystal.
Simulating a PCA using Floquet-Langevin dynamics.—

In order to extend PCA time crystals to a microscopic,
physical setting, we now demonstrate the ability for
continuous-time Langevin dynamics to effectively simulate
any PCA. The dynamics we consider take the general
Langevin form

q̇i ¼ ∂pi
Hðfp; qg; tÞ

ṗi ¼ −∂qiHðfp; qg; tÞ þ RiðtÞ − γpi

hRiðtÞRjðt0Þinoise ¼ 2γTδijδðt − t0Þ; ð3Þ

where ðqi; piÞ are the conjugate variables of a classical
oscillator at site i, and RiðtÞ is a stochastic force whose
variance is proportional to the friction coefficient γ and the
temperature T. We focus on a CA with states η∈ f−1; 1g
which we will encode in the oscillator with the identifica-
tion η ¼ signðqÞ as depicted in Figs. 1(b) and 1(c).
The Hamiltonian takes the form HðtÞ ¼ P

iðp2
i =2mÞþ

Uðfqg; tÞ, with UðtÞ engineered so that one Floquet cycle,
Hðtþ τÞ ¼ HðtÞ, will implement one application of the
update rule T .
When attempting to build Floquet-Langevin dynamics

that simulate a PCA, we encounter the following challenge.
In our continuous-time dynamics, one needs a way to

“store” the previous global state throughout the update
cycle. This is essential in order to give the dynamics enough
time to identify what the new state of the system should
be. To solve this issue, at each position x, we envision
two oscillators (A and B) with coordinates ðqAx ; pA

x Þ and
ðqBx ; pB

x Þ. At each step, we will view one set of oscillators
(say A) as the “memory,” while the other set (B) will
undergo evolution to the new state B ¼ T ðAÞ, driven
by Uðfqg; tÞ ¼ VIðfqgÞ. After letting the particles relax
to their positions using a pinning potential Uðfqg; tÞ ¼P

i VpinðqiÞ, we exchange the role of A and B and repeat.
For more details on the specific four-step Floquet-Langevin
sequence see Appendix A.
Discrete time crystal in a Floquet-Langevin simulation

of the π-Toom model.—Within the PCA setting, the
π-Toom model is a discrete time crystal, and we have
just described a procedure for “simulating” any PCA using
continuous-time Floquet-Langevin dynamics. Naively, it
seems that combining these two insights immediately
yields a continuous-time, Floquet-Langevin DTC with
an infinite lifetime. The subtlety is the following: at finite
temperature, the errors due to Langevin noise (e.g.,
thermally activated escape out of the pinning potentials)
may not satisfy the requirements of the Gács and Toom
error models [Eq. (2)]. We will return to a detailed analysis
of error correlations, but let us begin by numerically
exploring the existence of time crystalline order in a
Floquet-Langevin simulation of the π-Toom model.
Working with a two-dimensional square lattice, we

perform an extensive set of numerical simulations by
solving the Floquet-Langevin dynamics [Eq. (3)] using a
symplectic stepping method. To implement the π-Toom
model, we take the pinning potential to be VpinðqÞ ¼
vpinðq − 1Þ2ðqþ 1Þ2 þ Fq, where F ¼ 10−4 breaks the

(a) (b)

FIG. 2. Error probability PE versus the ratio of the pinning
potential to the temperature, v=T, in simulations of (a) the do-
nothing (I ) and Toom CAs. The dashed-red line indicates the
equilibrium estimate PE ¼ 1

2
erfcð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vI=ð2TÞ
p Þ. (b) The π-Toom

CA. While PE apparently depends on the simulated CA, as v
increases the π-Toom error rate converges toward the Toom error
rate. In all cases, we find an exponential decay in the error rate as
a function of v=T. Data are obtained from a 32 × 32 system by
averaging over 25 Floquet cycles after an initial evolution of 200
Floquet cycles.
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accidental Ising symmetry of the model. We parameterize
the magnitude of the interaction and the pinning potentials
as 4vI ¼ vpin ¼ v, while the noise term, RiðtÞ, is imple-
mented via random momentum kicks with variance 2γTdt.
Finally, γ is chosen such that the dynamics are tuned to
critical damping relative to both Vpin and VI .
In order to ensure that a single Floquet period imple-

ments only one π-Toom update, we utilize the following
interleaving strategy: in step two, we choose T to be the
Toom update rule, while in step four, we choose T to be
the π-Toom update rule. We compute the Floquet-
Langevin dynamics up to timescale, t ∼ 104, starting from
a uniform initial state (a study of different initial states is
provided in the Supplemental Material [57]). We probe the
resulting dynamics by measuring the average “magneti-
zation,” hMAi≡ ð1=NÞPk signðqAk Þ, where N ¼ L × L is
the system size. Time crystalline order corresponds to
stable period doubling of the magnetization; indeed, as
shown in Fig. 1(d), the autocorrelation of the magnetiza-
tion hMAðtÞMAð0Þi exhibits period doubling out to a
timescale that increases exponentially with L [57]. The
DTC order parameter is then defined as the time average
(over both space and time) of the stroboscopic magneti-

zation: ð−1Þbt=τchMAi.
In order to compare our Floquet Langevin simulation with

a direct implementation of the π-Toom PCA, we first
translate the temperature, T, to an effective error rate PE
(per space-time unit cell) [91]. As shown in Fig. 1(a), the
time crystalline order parameter, which we estimate from the
time window t=τ ¼ 3000–3500, exhibits a phase transition
as a function of PE. The functional form and location of
the DTC phase transition are in good agreement between
our continuous-time Floquet Langevin simulation of the
π-Toommodel and a direct implementation of the PCA itself
(with improving agreement for larger pinning potentials).
The nature of errors in the Floquet-Langevin DTC.—

Because of the presence of a finite temperature bath,
our continuous-time Floquet-Langevin simulation of the
π-Toom model is intrinsically noisy. Large thermal fluctua-
tions can lead to an “error” in the subsequent state ηðx; tÞ
relative to the noiseless transition T ðηðxþN ; t − 1ÞÞ.
Fortunately, our overall goal is in fact to simulate the noisy
PCA version of the π-Toom model. However, even then,
the distribution of errors arising from the Floquet-Langevin
dynamics need not (a priori) be consistent with the
aforementioned error condition [Eq. (2)].
To this end, our final goal is to obtain numerical evidence

that: (i) the errors arising from the Floquet-Langevin
dynamics satisfy Eq. (2) for some constant ϵðTÞ and (ii) the
error bound ϵðTÞ can be made arbitrarily small as T → 0.
To begin, we first examine the temperature dependence of
the error rate per space-time unit cell PE ¼ hEui, where
Eu ¼ 0=1 is the indicator function for an error at u [92]. In
Fig. 2, we show the empirically measured error rate PEðTÞ
as a function of v=T for the Floquet-Langevin simulation of

three different PCA rules: the “do-nothing” rule I , the
Toom rule, and the π-Toom rule. In all cases we find that
decreasing the temperature leads to an exponential decay in
PE, implying that for strong potentials and low temper-
atures, arbitrarily small error probabilities are obtained.
We now turn to the crucial issue of spatiotemporal

correlations. Consider an arbitrary space-time volume V
containing jVj points. Letting PðNVÞ denote the probability
that NV errors occur in the volume V, we aim to provide
empirical evidence that there is a constant ϵ such that
PðNV ¼ jVjÞ ≤ ϵjVj for all V. However, measuringPðNV ¼
jVjÞ directly is difficult because for large jVj such “large
deviations” [93–96] are too rare to enable the collection of
sufficient statistics. To make progress, we will instead relate
PðNV ¼ jVjÞ to the connected n-point correlations of
the errors. In particular, following the detailed derivations
in Appendix B, our aim is to provide numerical evidence
that the nth cumulant, κn does not grow faster than n! or jVj.
Restricting to space-time boxes of dimension jVj ¼ L3,

we show the estimated cumulants for our Floquet-Langevin
simulation of the π-Toom model for 2 ≤ L ≤ 32 [Fig. 3(a)].
They converge to a finite cn with a power law correction in
1=L [57]. While it is difficult to estimate the cumulants
beyond n > 3, from the available data, the n! bound on cn is
safely satisfied. In addition to power-law correlations, the

(c)

(a) (b)

FIG. 3. (a) Scaled cumulants, κn=ðL3n!Þ, of the error distribu-
tion from a Floquet Langevin simulation of the π-Toom model for
L × L × L space-time volumes. The dashed curves are fits to
κn=L3 ¼ cn − bnL−μn . As shown in the Supplemental Material
[57], we find μ > 0 indicating convergence to a finite cn. Each
data point was estimated from the statistics of 3000 independent
Langevin trajectories (T ¼ 5.17, v ¼ 100), with 1000 L × L × L
blocks sampled from each trajectory. (b),(c) The connected two-
point correlations of the errors for v ¼ 100 and T ¼ 5.17. The
magnitude of the error correlations for a diagonal cut along space
are depicted in (b), while the real-space propagation of errors is
shown in (c). The color map range is rescaled by 1.0, 0.025, and
0.004 for the left, middle, and right panels, respectively.
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nonzero higher-order cumulants also suggest that the
error distribution is non-Gaussian. Interestingly, this orig-
inates from the anisotropic nature of the π-Toom update
rule. An initial error causes an increased likelihood for
errors at nearby space-time points, with correlations that
propagate outward in the “NEC” direction [Figs. 3(b)
and 3(c)].
In summary, despite errors which are both power-law

correlated and non-Gaussian, we find compelling evidence
that the Floquet-Langevin DTC satisfies the requisite error
condition for absolute stability [52–56]. Of course we
cannot rule out that for some anomalously large volume
jVj, cumulant order n, or inverse temperature 1=T, the
observed behavior will change course and violate the
bound—a caveat common to any numerical finite-scaling
approach. Obtaining a rigorous proof of this bound thus
remains an important open question.

Note added.—Recently, we became aware of complemen-
tary work exploring the utility of Toom-like dynamics for
stabilizing time-crystalline phases in noisy, incoherent
quantum spin systems [97].
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Appendix A: Details of the specific four-step Floquet-
Langevin dynamics.—We begin with the oscillators at site
x in the state ðqA=Bx ; pA=B

x Þ ¼ ðηðx; tÞ; 0Þ. From there, the
dynamics evolve via a four-step process governed by [98]

HðtÞ ¼
X
x

ðpA
x Þ2

2m
þ ðpB

x Þ2
2m

þ Uðt; fqAx ; qBx gÞ; ðA1Þ

where the potential Uðt; fqAx ; qBx gÞ has a Floquet period
of τ ¼ 4:

Uðt;fqAk ;qBk gÞ

¼

8>>>>><
>>>>>:

P
x
VpinðqAx ÞþVpinðqBx Þ mod ðbtc;4Þ¼ 0;2

P
x
VpinðqAx ÞþVIðqAxþN ;qBx Þ mod ðbtc;4Þ¼ 1

P
x
VIðqBxþN ;qAx ÞþVpinðqBx Þ mod ðbtc;4Þ¼ 3:

ðA2Þ

Let us unpack each of these steps in turn. First, we
envision turning on a one-body potential, VpinðqÞ, which
has been engineered so that so that each qx has local
minima at q ¼ �1. At sufficiently low temperatures, the
dissipative dynamics [Eq. (3)] will relax each oscillator’s
positions, qx, toward the nearest local minima, which
corresponds to a valid state of the CA. The second step of
the Floquet dynamics implements the cellular automaton
transition B ¼ T ðAÞ. We will keep qA fixed using the
pinning potential. For the B oscillators, however, we turn
off Vpin, and turn on an interaction potential VI between
oscillators A and B. The interaction is engineered such that
each oscillator B experiences a single potential minimum
corresponding to the desired update rule as dictated by the
oscillators A in its neighborhood; as a result, VI depends
on both qBx and qAxþN . In the third step, we turn off the
interaction, VI , while ramping up the pinning potential,
Vpin. As in the first step, dissipation relaxes and pins the
positions of the oscillators. Finally, in the last step, we
implement “A ¼ T ðBÞ” by repeating step two with the
role of A and B reversed [57]. Note that one can also
replace the transition T in the last step with the “do-
nothing” CA rule, I , if one wants to implement only a
single CA update per Floquet cycle.

Appendix B: Derivations relating PðNV ¼ jVjÞ to the
connected n-point correlations of the errors.—Consider
the scaled cumulant generating function (SCGF),
λVðjÞ ¼ ð1=jVjÞ loghejNV i, which upper bounds the error
probability as PðNV ¼ jVjÞ ≤ e−jVjðj−λVðjÞÞ for any choice
of j ≥ 0. The error bound from Eq. (2) can then be
reexpressed via a min-max principle as

lnð1=ϵÞ ¼ min
V

max
j≥0

½j − λVðjÞ�: ðB1Þ

Crucially, the Taylor series of the SCGF is directly
related to the cumulants, κn, of the error distribution,
λVðjÞ ¼ jVj−1P∞

n¼1 κnðjn=n!Þ; the cumulants themselves
are in turn directly related to the connected
correlations, e.g., for n ¼ 2, κ2 ¼

P
u1;u2 ∈VhEu1Eu2ic. If

the correlations decay sufficiently rapidly as a function
of distance, the cumulants will scale as κn ∼ jVjcnðVÞ,
where the coefficient cnðVÞ depends on the geometry of
V but does not grow with jVj (i.e., c1ðVÞ ¼ PE). So
long as this coefficient is upper bounded by some
constant cn ≡maxV cnðVÞ, and cn itself grows slower
than n!, one can immediately upper bound λVðjÞ ≤
λðkÞ≡P∞

n¼1 cnðkn=n!Þ for all k ≥ 0. It then follows
that lnð1=ϵÞ ¼ maxj≥0½j − λðjÞ� also satisfies Eq. (2).
Since λð0Þ ¼ 0 and λ0ðkÞ ¼ PE < 1, the maximal value
is positive and finite, ensuring Eq. (2) is satisfied for
some ϵ < 1.
We now discuss whether the error bound ϵðTÞ → 0 as

T → 0, ensuring that by reducing the temperature of the

PHYSICAL REVIEW LETTERS 131, 180402 (2023)

180402-5



external bath, the error probability can be made arbitrarily
small. One sufficient condition is the existence of a
T-independent, continuous, and strictly increasing function
ΛðkÞ such that λðkÞ ≤ PEðTÞΛðkÞ for all k; T ≥ 0 and with
Λð0Þ ¼ 0. To see why, note the aforementioned min-max
principle now becomes

log ½1=ϵðTÞ� ¼ max
j≥0

½j − PEðTÞΛðjÞ�: ðB2Þ

Since ΛðjÞ is invertible on j∈Rþ, we may define
j�ðPEÞ ¼ Λ−1ð1=PEÞ. Equation (B2) then provides the
bound log½1=ϵðTÞ� ≥ j�ðPEðTÞÞ − 1. Finally, note
limPE→0 j�ðPEÞ ¼ ∞, because the inverse of a strictly
increasing function is itself strictly increasing. Thus, the
existence of such aΛðjÞ, combined with our earlier evidence
that limT→0 PEðTÞ ¼ 0, would imply limT→0 ϵðTÞ ¼ 0.
To verify the existence of such a ΛðjÞ, it would be

sufficient to show that the scaled cumulants are bounded as
cnðTÞ ≤ PEðTÞCn, with Cn growing slower than n!, so that
ΛðjÞ has an infinite radius of convergence [Poisson

statistics corresponds to Cn ¼ 1, ΛðkÞ ¼ ek]. A prelimi-
nary comparison of T ¼ 5.17, 11.94 (Fig. 3 in the main text
and Fig. 4 in the Supplemental Material [57]) finds
c2ðTÞ=PEðTÞ ¼ 1.24 at T ¼ 11.94, while c2ðTÞ=PEðTÞ ¼
1.08 at T ¼ 5.17, consistent with an approach to C2 ∼ 1,
but a comprehensive investigation remains a work in
progress (summary of the extracted cumulant fits can be
found in Table I).
We end this appendix by complementing the data

presented in Fig. 3(b) of the main text with additional
space-time cuts as well as different temperatures [Fig. 4].
With regards to the space-time cuts, we observe that the
correlations in errors are clearly anisotropic—when con-
sidering cuts in the negative x̂ direction (Fig. 4, top row),
the correlations quickly become zero once the distance
between the sites is greater than 2. On the other hand, when
moving in the NEC direction, we find that error correlations
are much greater and display a light-cone-like behavior—
namely, errors a distance l away become meaningful after
Δt ¼ l steps have passed. This fact is further enhanced
upon increasing the temperature of the system. When going
from T ∼ 5 to T ∼ 11, we observe that the correlated errors
survive to much later times and spread to longer distances.
These behaviors highlight the non-Markovianity of the
noise in the Floquet-Langevin dynamics. Nevertheless, our
present numerical results suggest that the noise satisfies the
condition encoded in Eq. (2).
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