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Abstract
We propose several techniques to enhance the parallel scalability of a matrix-free eigensolver designed for studying many-
body localization (MBL) of quantum spin chain models with nearest-neighbor interactions and on-site disorder. This type of
problem is computationally challenging because the dimension of the associated Hamiltonian matrix grows exponentially
with respect to the number of spins L, and we need to average over different realizations of the random disorder to obtain
relevant statistical behavior. For each disorder realization, we need to compute eigenvalues from different regions of the
spectrum and their corresponding eigenvectors. In previous work, the interior eigenstates for a single eigenvalue problem
are computed via the shift-and-invert Lanczos algorithm. Due to the extremely high memory footprint of the LU fac-
torizations, this technique is not well suited for large L’s. For example, we need thousands of compute nodes on modern
high performance computing infrastructures to go beyond L = 24. The matrix-free approach does not suffer from this
memory bottleneck, however, its scalability is limited by a computation and communication load imbalance. To reduce this
imbalance and to significantly enhance the scalability of the matrix-free eigensolver, we reorder the matrix and leverage the
consistent space runtime, CSPACER. We also show its efficiency in managing irregular communication patterns at scale
compared to optimized MPI non-blocking two-sided and one-sided RMA implementation variants. This effort enables us to
study MBL for spin chains with a larger number of spins. The efficiency and effectiveness of the proposed algorithm is
demonstrated by computing eigenstates on a massively parallel many-core high performance computer.
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1. Introduction

A fundamental assumption in the traditional theory of
statistical mechanics is that an isolated system will in
general reach an equilibrium state, or thermalize. As early as
the mid-20th century, Anderson demonstrated that a single
particle moving in a highly disordered landscape can violate
this assumption (Anderson, 1958). While surprising that
result does not readily extend to many-particle systems that
exhibit strong interactions between the constituent particles.
The question of whether a similar effect could manifest in a
strongly interacting many-body system remained open for
decades. This elusive phenomenon has been termed “many-
body localization” (MBL).

Recently, advances in both high performance computing
and experimental control of individual quantum particles
have begun to yield insight into MBL. Both experimental

(Bordia et al., 2017; Choi et al., 2016; Kohlert et al., 2019;
Lukin et al., 2019; Schreiber et al., 2015; Smith et al., 2016)
and numerical (Bauer and Nayak, 2013; Cuevas et al., 2012;
Johri et al., 2015; Luitz et al., 2015; Pal and Huse, 2010)
results have shown evidence of localization in small
strongly interacting multiparticle systems of 10–20 spins.
Unfortunately, extrapolating results from these small system
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sizes to the infinitely large thermodynamic limit has proven
difficult. This lack of clarity has inspired a vigorous debate
in the community about precisely what can be learned from
small-size results. For example, it has been proposed that
certain features do not actually exist at infinite system size
(De Roeck et al., 2016), and even that MBL itself is only a
finite-size effect (Abanin et al., 2021; Šuntajs et al., 2020)!

The primary goal of most studies is to identify and
characterize a localization transition. In the thermodynamic
limit, as the strength of the system’s disorder increases,
theory predicts a sharp, sudden change from a thermal to a
localized state. Unfortunately, in the small systems available
for study, that sharp transition turns into a smooth crossover,
leading to the confusion about what constitutes the tran-
sition itself. Numerical evidence suggests that the transition
sharpens rapidly as system size increases, so accessing as
large systems as possible is imperative for investigating
MBL.

In pursuit of that goal, Luitz et al. used large-scale nu-
merical linear algebra to show a localization transition for
system sizes up to L = 22 (Luitz et al., 2015), and in a
following paper extracted useful data up to L = 24
(Pietracaprina et al., 2018). In order to compute interior
eigenstates for the MBL problem, the shift-and-invert
Lanczos algorithm was used in combination with sparse
direct solvers for solving the linear systems. One of the
major disadvantages of this technique is that constructing
the LU factorizations becomes extremely memory de-
manding, due to the so called fill in, for large number of
spins L. Figure 1 shows that the memory footprint of the LU
factorization computed via STRUMPACK (Ghysels et al.,
2017) grows rapidly as function of L; see also (Pietracaprina
et al., 2018). Hence, thousands of nodes on modern high

performance computing infrastructures are needed to go
beyond L = 24.

To overcome the memory bottleneck that the shift-and-
invert Lanczos algorithm faces, we recently proposed in
(Van Beeumen et al., 2020) using the matrix-free locally
optimal block preconditioned conjugate gradient
(LOBPCG) algorithm (Knyazev, 2001). As shown in
Figure 1, this approach reduces the memory footprint by
several orders of magnitude, for example, from 15 TB to
only 7GB for L = 26, and enables simulating spin chains on
even a single node, up to L = 24. In contrast to the shift-and-
invert Lanczos algorithm, where the dominant computa-
tional cost is the construction of the LU factorization, the
dominant computational cost of the LOBPCG algorithm is
the (block) matrix-vector (MATVEC) product. As illus-
trated in (Van Beeumen et al., 2020), the scalability of this
MATVEC is limited at high concurrency which is due to a
computation and communication imbalance. In the current
paper, we present different strategies to overcome this
imbalance and to significantly enhance the scalability of the
matrix-free eigensolver.

The paper is organized as follows. We first review the
Heisenberg spin model and MBL metrics in Section 2. The
multiple levels of concurrency and the matrix-free
LOBPCG eigensolver are discussed in Section 3. Next,
we present the balancing of computation and communi-
cation within the MATVEC in Section 4 and the optimi-
zation of the communication performance in Section 5.
Then in Section 6, we illustrate the different proposed
strategies for improving the computation and communi-
cation imbalance of the matrix-free LOBPCG eigensolver
for L = 24 and L = 26 problems. Finally, the main con-
clusions are formulated in Section 7.

2. Problem formulation

In this section, we briefly review the properties of the spin
chain model that most frequently is studied by numerical
simulations of MBL.

2.1. Heisenberg spin model

We consider the nearest-neighbor interacting Heisenberg
spin model with random on-site fields

H ¼
X

hi,ji
S
!

i � S!j þ
X

i

hiS
z
i (1)

where the angle brackets denote nearest-neighbor i and j, hi
is sampled from a uniform distribution [ � w, w] with
w2R

þ
0 , and

S
!

i � S!j ¼ Sx
i S

x
j þ Sy

i S
y
j þ Sz

i S
z
j

Figure 1. Total memory footprint as a function of the spin chain
length L for LU factorizations, computed via STRUMPACK, and
the matrix-free LOBPCG algorithm [18], with block size 64.
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where Sαi ¼ 1=2σαi , with σαi the Pauli matrices operating on
lattice site i and α 2 {x, y, z}. The parameter w is called the
disorder strength, and is responsible for inducing the MBL
transition. The values hi are sampled randomly each time the
Hamiltonian is instantiated, and the relevant physics lies in
the statistical behavior of the set of all such Hamiltonians.
The individual HamiltoniansHwith independently sampled
hi are called disorder realizations.

Note that in (1) each term of each sum has an implied
tensor product with the identity on all the sites not explicitly
written. Consequently, the Hamiltonian for L spins is a
symmetric matrix of dimension N = 2L and exhibits the
following tensor product structure

H ¼
XL�1

i¼1

IÄ/ÄIÄHi,iþ1ÄIÄ/ÄI

þ
XL

i¼1

IÄ/ÄIÄhiS
z
iÄIÄ/ÄI

(2)

where Hi,iþ1 ¼ Sxi S
x
iþ1 þ Syi S

y
iþ1 þ Szi S

z
iþ1 is a 4-by-4 real

matrix and I is the 2-by-2 identity matrix. Remark that by
definition, all matrices Hi,i+1 are the same and independent
of the site i. For our experiments, we use open boundary
conditions, meaning that the nearest-neighbor terms do not
wrap around at the end of the spin chain. Open boundary
conditions can be considered to yield a larger effective
system size because of the reduced connectivity.

The state of each spin is described by a vector in C2, and
the configuration of the entire L-spin system can be de-
scribed by a vector on the tensor product space ðC2ÞÄL. In
this specific case, however, the Hamiltonian’s matrix ele-
ments happen to all be real, so we do not include an
imaginary part in any of our computations. Furthermore, our
Hamiltonian commutes with the total magnetization in the z
direction, Sz ¼ PL

i¼1S
z
i . Thus, it can be block-diagonalized

in sectors characterized by Sz2 [� L/2,� L/2 + 1,…, L/2�
1, L/2]. The vector space corresponding to each sector has

dimension n ¼ ð L

SzþL=2
Þ such that the largest sector’s di-

mension is n ¼ L!=½ðL=2Þ!ðL=2Þ!�, and this corresponds to
the actual dimension of the matrices on which we operate,
see Figure 1. While these subspaces are smaller than the full
space, their size still grows exponentially with the number
of spins L. Thus, the problem becomes difficult rapidly as L
increases. Furthermore, the density of eigenvalues in the
middle of the spectrum increases exponentially with L.
Thus, the tolerance used to solve for these internal eigen-
values must be made tighter rapidly as L increases.

2.2. Many-body localization

With the problem’s matrix clearly defined, we now review
ways for quantifying localization from the eigenvalues and

eigenvectors. There are multiple quantities that can be used
for identifying localization.

One of the commonly used quantities is the adjacent gap
ratio (Cuevas et al., 2012; Johri et al., 2015; Oganesyan and
Huse, 2007; Šuntajs et al., 2020). This approach is based on
the statistical distribution of the eigenvalues of different
disorder realizations, hence, only eigenvalues need to be
computed. Random matrix theory informs us that the sta-
tistical distribution of eigenvalues will differ between lo-
calizing and thermalizing Hamiltonians (Oganesyan and
Huse, 2007). In particular, we expect eigenvalues of a
thermal Hamiltonian to repel each other, that is, hybrid-
ization of eigenvectors prevents them from generally coming
too close to one another. The eigenvalues of a localized
Hamiltonian should not display this behavior: we expect
them to be Poisson distributed. Therefore, we can measure
localization by comparing the relative size of gaps between
the eigenvalues. Thermal Hamiltonians will generally have
more consistently sized gaps due to level repulsion. However,
this technique suffers from large statistical noise and thus
requires many samples to be usable.

Another quantity for measuring localization is the ei-
genstate entanglement entropy (Van Beeumen et al., 2020)
which is based on the eigenvectors of the Hamiltonians. In a
thermal system, we expect quantum entanglement to be
widespread, while in a localized system, the entanglement is
not expected to be extensive. This idea can be quantified by
choosing a cut which divides the spin chain into two pieces,
and measuring the entanglement across it. Not only the
value of the entropy changes during the localization tran-
sition: the statistics change as well. When compared across
disorder realizations, the thermal entanglement entropy has
small variance. During the transition, however, the entan-
glement entropy depends strongly on the specific disorder
realization and thus the statistic will have a large variance.
Empirically, examining the variance of the entanglement
entropy is one of the best ways to identify the localization
transition and requires fewer samples than the adjacent gap
ratio approach.

3. Massively parallel simulation

In order to maximally reduce the finite-size effects on the
determination of the MBL transition point, we need to study
spin models with as many spins as possible. Consequently,
this problem is computationally demanding and requires
lots of resources.

3.1. Multiple levels of concurrency

The MBL study allows for at least four levels of concur-
rency. The first level corresponds to the need of averaging
over (many) different and independently sampled disorder
realizations in order to obtain relevant statistical behavior.
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Since the disorder strength is responsible for inducing the
MBL transition, we also have to vary the disorder strength,
giving rise to the second level of concurrency. The third
level corresponds to the eigenvalue chunks, that is, for each
(large) eigenvalue problem, originating from one disorder
realization and a particular disorder strength, we have to
compute eigenvalues from different regions of the spectrum
and their corresponding eigenvectors.

All previous levels of concurrency are completely in-
dependent and can be implemented in a massively parallel
fashion by making use of iterative eigensolvers. In this
paper, we therefore only focus on the fourth level of par-
allelism taking place within these eigensolvers. Although
most iterative eigensolvers follow a rather sequential pro-
cedure, each of the different steps within one iteration can be
implemented in parallel.

3.2. Matrix-free LOBPCG eigensolver

The Locally Optimal Block Preconditioned Conjugate
Gradient (LOBPCG) algorithm (Duersch et al., 2018;
Knyazev, 2001) is a widely used eigensolver for computing
the smallest or largest eigenvalues and corresponding ei-
genvectors of large-scale symmetric matrices. Key features
of the LOBPCG algorithm are: (i) It is matrix-free, that is,
the solver does not require storing the coefficient matrix
explicitly and it access the matrix by only evaluating matrix-
vector products; (ii) It is a block method, which allows for
efficient matrix-matrix operations on modern computing
architectures; (iii) It can take advantage of preconditioning,
in contrast to, for example, the Lanczos algorithm.

The standard LOBPCG algorithm allows for computing
either the lower or upper part of the spectrum. In order to
compute interior eigenvalues and their corresponding ei-
genvectors, we make use of the so called spectral fold
transformation (Tomov et al., 2005; Wang and Zunger, 1994)

ðH � σIÞ2

where σ 2R is the shift around which we want to compute
eigenvalues. This spectral transformation maps all eigen-
values to the positive real axis and the ones closest to the
shift σ to the lower edge close to 0. Hence, after applying
this transformation, we can also use the LOBPCG ei-
gensolver for computing interior eigenvalues. Because the
transformed eigenvalue problem

ðH � σIÞ2x ¼ λx

is symmetric positive definite, we use a diagonal (Jacobi)
preconditioned conjugate gradient (PCG) method as pre-
conditioner for the LOBPCG eigensolver. For more details
on the matrix-free LOBPCG eigensolver used in the par-
ticular case of studying MBL, we refer to (Van Beeumen
et al., 2020).

In contrast to the shift-and-invert Lanczos algorithm,
where the dominant computational cost is the construction
of the LU factorization, the dominant computational cost of
the LOBPCG and PCG algorithms is the (block) MATVEC.
In the remainder of the paper, we therefore will mainly focus
on enhancing the scalability of the MATVEC.

4. Balancing computation
and communication

In this section we have a closer look at the MBL (block)
matrix-vector product and focus on how to enhance its
scalability by reducing the computation and communication
imbalance.

4.1. Matrix-free Matrix-vector product

As a starting point, we take the hybrid MPI–OpenMP
MATVEC introduced in (Van Beeumen et al., 2020).
This matrix-free MATVEC uses one MPI rank per node and
OpenMP for on-node parallelism. The block of vectors to be
multiplied by the Hamiltonian matrix is partitioned by rows
and distributed among different MPI ranks (and nodes).
Within each MPI rank, a local sparse MATVEC is per-
formed. A subset of the rows in the local vector block needs
to be sent to other MPI ranks to be multiplied and accu-
mulated on the target MPI ranks. Each MPI rank also re-
ceives vector block contributions from other MPI ranks to
be combined with the local product. It has been illustrated in
(Van Beeumen et al., 2020) that the parallel MATVEC
implementation using non-blocking MPI communication,
in combination with overlapping communication and local
computation, results in the best performance.

Figure 2 shows the average wall clock time as a function
of the rank for 100 samples of the L = 26 non-blockingMPI-
OpenMPMATVEC. The different amounts of time spend in
the MPI barrier shows clearly the high computation and
communication imbalance of this MATVEC. Note that the
local computation time can be fully overlapped with the
communication and that the computation time shown only
corresponds to the remote computation time which can only
start once the incoming data has arrived. Figure 2 also il-
lustrates that this MATVEC is communication dominated.
The difference between computation and communication
time further increases for higher concurrency. Therefore, in
the remainder of this paper, we will focus on different
strategies for reducing and optimizing the communication
time.

4.2. Graph partitioning

The row partition of the vectors among different MPI ranks
corresponds to a partition of the adjacency graph induced by
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the many-body Hamiltonian, with vertices mapped rows or
columns, and edges mapped to nonzero elements of the
Hamiltonian. Within each partition, vertices that are not
connected with vertices in other partitions by edges are
strictly local. The corresponding rows do not need to be sent
to other MPI ranks. The vertices that are connected to
vertices in other partitions are called shared rows. They
need to be sent to other MPI ranks in a parallel MATVEC
implementation.

The state ordering for the hybrid MPI–OpenMP MAT-
VEC in (Van Beeumen et al., 2020) leads to a simple
communication pattern where, up to ∼50 ranks, only
communication with neighboring ranks in a linear topology
is required. The ordering of the states also allows for ef-
ficiently computing the off-diagonal element indices on the
fly for applying the matrix-free MATVEC. However, as
shown in Figure 2, the communication is largely imbalanced
and far from optimal. In particular, the graph for the
Hamiltonian is quite nonuniform, and vertices in the middle
are much more densely interconnected than vertices on the
edge.

One of the properties of the Heisenberg spin model with
random on-site fields is that the sparsity pattern of (2) does
not change for different disorder realizations, neither does
the corresponding matrix graph. Therefore, we can apply
graph partition techniques in order to reduce the commu-
nication volume and better balance the communication time
among the different MPI ranks. A comparison of the
communication volume, as a function of the total number of
MPI ranks, between the hybrid MPI–OpenMP state or-
dering used in (Van Beeumen et al., 2020) and the METIS k-
way graph partitioning (Karypis & Kumar, 1998) reordering
of the states is shown in Table 1. For the METIS graph

partitioning, we used the objective function for total
communication volume minimization (Karypis, 2013).

Table 1 shows that for the L = 24 MATVEC beyond four
MPI ranks both the total communication volume as well as
the maximum communication volume per rank can sig-
nificantly be reduced by using the METIS reordering. Note
that this reordering will have an effect on both the com-
putation and communication within the MATVEC. First,
although the communication volume is reduced, the METIS
reordering of the states results in a more complicated
communication pattern compared to the original MPI–
OpenMP one in (Van Beeumen et al., 2020). Hence, each
rank needs, in general, to communicate with more than two
other ranks. Second, the METIS reordering of the states is
also less structured and therefore the remote MATVEC
computation will require more complicated lookup tables.
However, since the MATVEC is communication dominant
and we maximally overlap computation with communica-
tion, the extra overhead from a slightly slower computa-
tional portion will be marginal.

5. Communication
performance optimization

The load-balancing of computation usingMETIS affects the
communication pattern—specifically, the number of mes-
sages per rank from being constant to being a function of the
rank count.

Figure 3 shows the distribution of the neighbor count a
rank needs to communicate the vector with, as we increase
the job size. With METIS partitioning, depending on the
rank position within a job, a different number of neighbors
are involved in the vector exchange. With each of these
neighbors, a rank needs to communicate a portion of their
assigned vector. As shown in Figure 3, for the L = 26
problem, the number of neighbors increases super-linearly
with respect to log(r), where r is the rank count.

Figure 4 shows the number of rows, of the partitioned
block vector, each rank exchanges with their neighbors as a

Table 1. Communication volume as a function of the total
number of MPI ranks for the L = 26 MPI–OpenMP MATVEC with
the state ordering in [18] and the METIS reordering.

Ranks 4 8 16 32

(a) Total communication volume
[18] 1097 358 2552 781 4788 256 9620 799
METIS 1406 736 2350 508 4082 179 5893 137
Gain �28% 8% 15% 39%

(b) Maximum communication volume per rank
[18] 376 007 408 962 416 484 419 402
METIS 481 086 389 561 348 559 277 669
Gain �28% 5% 16% 34%

Figure 2. Average wall clock time as a function of the MPI rank
for the different components of the L = 26 non-blocking MPI–
OpenMP MATVEC with block size 64.
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function of the sharing level, that is, the number of
neighbors a row block is sent to. From this figure, we see
that the number of row blocks not involved in data exchange
decreases as we strong scale the computation, hence,
making it necessary to communicate an increasing fraction
of rows. Moreover, the sharing level increase as well,
making it necessary to exchange the same row with multiple
ranks. Such sharing makes the volume of communicated
data to decrease sub-linearly with the rank count. Overall,
the total volume of communicated data increases as we scale
the job, roughly proportional to the

ffiffi
r

p
.

Fortunately, the sparsity pattern that influences the
communication pattern remains unchanged across itera-
tions. As such, one could classify this communication

pattern as a static irregular one, and we can construct all
needed information about the communication pattern before
the communication starts. Although the algorithm relies on
other communication primitives, such as allreduce, they do
not significantly contribute to the execution time.

The discussed attributes show the challenge in strong-
scaling the computation, which could be summarized by the
need for processing an increasingly large number of small
messages.

5.1. Structuring communication using MPI

MPI provides multiple techniques to implement a com-
munication pattern. While not claiming that we exhausted
all possible methods, we explored a few widely used
techniques that are likely to serve our communication
pattern.

The most natural way to implement our matrix-vector
communication pattern is to use non-blocking point-to-
point transfers. We overlapped local computation with
some of the communication cost by assigning a thread to
progress communication in the background while per-
forming local computations.

In addition to using point-to-point communication
primitives, we explored the use of MPI-3 non-blocking all-
to-all collective primitives (Hilbrich et al., 2016), andMPI-3
RMA (Hoefler et al., 2015). The collective-based
implementation matches more or less the non-blocking
point-to-point and is omitted for brevity. We found the
MPI one-sided implementation efficient at small scale, but
the scaling behavior is inefficient in our experience on the
Cray XC40 system.

5.2. Structuring communication using CSPACER

In this study, we explored the use of CSPACER (Ibrahim,
2020, 2021), Consistent SPACE Runtime, which provides a
low overhead communication abstraction for irregular
communication patterns. The runtime extends the support of
the consistency space abstraction (Ibrahim, 2019) to Cray
systems. The runtime could interoperate with the MPI
runtime, allowing for incremental integration and tackling
communication hotspots while retaining the bulk of MPI’s
communication code.

The space consistency abstraction (Ibrahim, 2019) is a
generalization of full-empty synchronization for distributed
computing, where each memory region is associated with a
counter that determines its consistency. A memory space
becomes consistent, that is, ready for consumption, when
the counter matches a specific consistency tag. To construct
a consistent state, a space typically receives one or multiple
transfers from one or more producers. The runtime provides
APIs to facilitate checking the consistency of a space for
consumers, but it does not provide the functionality of

Figure 4. The amount of data to be communicate (or “shared”)
among different ranks in the L = 26 MATVEC communication
phase as we scale the computation. The sharing level increases as
the number of ranks increases, making the scaling communication
bound.

Figure 3. The distribution of neighbor count for vector data
exchange as we scale the job size due to load-balancing the L =
26 MATVEC. Not only the number of communication messages
increases, but also the variability increases significantly while
scaling.
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tracking the completions for individual data transfers. The
runtime relies on symmetric space allocations across a team
of ranks, and supports communication primitives such as
one-sided put, various collectives that are implemented as
patterns of multiple underlying primitives. Due to its simple
design, the CSPACER runtime enjoys a low injection
overhead, in the range of 0.4 µs on KNL architectures, and
provides good scalability, especially for irregular commu-
nication patterns.

The space consistency adopts a memory-centric ap-
proach while orchestrating communication across ranks,
rather than relying on transfer-centric strategies. It supports
multiple mechanisms for issuing transfer operations that
help achieving a consistent state, including concurrent
threaded injection from an OpenMP parallel region, pipe-
lined injection and progress, etc. The runtime implements
these operations without significant injection overhead or
serialization between concurrent threads. Moreover, suc-
cessfully injected transfers progress in the background
without requiring the runtime polling for progress, or as-
signing the progress to a thread. While transfer injection is
non-blocking by default, a transfer injection could be
blocked until resources are available. This back-pressure
mechanism provides some throttling mechanism to avoid
congesting the interconnect.

By not providing a mechanism of tracking completion of
individual transfers or ordering constraints between trans-
fers, the runtime could handle a large number of transfers
with minimal overhead. We structured the communication
such that a single space per rank receives the contribution of
all producer ranks. Therefore, involving more ranks in the
communication does not result in an increase of the over-
head of checking the data readiness for consumption. The
advantage of such approach manifests at scale.

6. Numerical experiments

All numerical experiments were performed on the NERSC
super computer called Cori, a Cray XC40 system powered
by Intel Xeon Phi “Knights Landing” (KNL) compute
nodes @1.4GHz, 68 cores and each with four hyper-
threads, 96GB DDR4 RAM, 16GB MCDRAM. The
Cray XC40 nodes are connected using a Dragonfly Aries
interconnect.

Throughout the numerical experiments we use a fixed
block size of 64 for the MATVECs and the LOBPCG ei-
gensolver. We also use one MPI rank per node and OpenMP
for on-node parallelism.

6.1. MPI–OpenMP MATVEC

In a first experiment, we compare the different im-
plementations of the MATVEC. Figure 5 shows the strong-
scaling results for the L = 24 and L = 26 MATVECs. In this

figure, the dashed lines correspond to the state ordering of
(Van Beeumen et al., 2020) with non-blocking MPI com-
munication and the dotted and solid lines correspond to the
proposed METIS state reordering with non-blocking MPI
and CSPACER communication, respectively.

Due to the large computation and communication im-
balance, as shown in Figure 2, the dashed lines in Figure 5
show that the scalability of the MATVEC implementation
using the original ordering of the states stops at 16 ranks. On
the other hand, this figure clearly shows that using the
proposed METIS reordering of the states yields the
MATVEC to continue scaling for higher concurrency. Al-
though the METIS reordering reduces both the total
communication volume and the maximum communication
volume per rank, just changing the ordering of the states
itself does not lead to an improvement of the wall clock time
for low concurrency. This is because the METIS reordering
leads to a more complicated communication pattern, which
could explain the higher overall wall clock time of the
dotted lines in Figure 5. As shown by the solid lines, the
extra cost originating from a more complicated commu-
nication pattern can be mitigated with an optimized runtime,
for instance using CSPACER.

The quality of the load-balancing of the matrix partitions
influences the scaling behavior because the slowest rank
dictates the overall performance. The graph partitioning is
an NP-hard problem and grows in complexity with the
problem size and the number of partitions (rank count).
Later results show that the work distribution, despite being
significantly improved, is not perfectly balanced. A such,
we conjecture that an improved load-balancing will result in
a better scaling behavior for the studied problem.

Figure 5. Strong scaling of 1 MATVEC with block size 64. The
dashed lines correspond to the state ordering used in [18], the
dotted lines to the METIS ordering, and the solid lines to the
METIS ordering + CSPACER.
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6.2. Matrix-free LOBPCG eigensolver

As discussed in Section 3.1, the MBL problem exhibits
multiple levels of concurrency and requires computing
eigenvalues/eigenvectors from different spectral regions.
Since computing eigenvalues in the middle of the spectrum
are the hardest, we focus on computing eigenvalues around
the shift σ = 0.

In all remaining experiments, we use the matrix-free
LOBPCG eigensolver with the METIS reordering for the
MATVEC. The PCG preconditioner has been implemented
as single-vector PCG running in parallel for each residual
and with a synchronization on the MATVEC, so that we can
always make use of the efficient (block) MATVEC. The
allreduce operations in the LOBPCG and PCG solver use
MPI, in contrast to the MATVEC for which we compare
different communication strategies. Because most of the
MATVECs take place in the preconditioner, we also per-
form all PCG iterations in single precision and only the
LOBPCG iterations in double precision. This mixed pre-
cision approach for the MBL problem turns out to have no
effect on the overall eigenvalue accuracy or the total number
of LOBPCG iterations, however, it significantly reduces the
wall clock time.

The L = 24 strong-scaling behavior of the different
communication strategies within the MATVEC are pre-
sented in Figure 6. Since the number of LOBPCG iterations
required to reach convergence depends on the disorder
strength, the region of the spectrum from which eigenvalues
are computed, and the number of iterations in the pre-
conditioner, we only report the timings for 1 L = 24
LOBPCG iteration with 5000 PCG iterations per LOBPCG
iteration. Note that the number of outer LOBPCG iterations
and the number of inner PCG iterations are related, that is,
the number of outer iterations (using double precision

MATVECs) can be reduced when the number of inner it-
erations (using single precision MATVECs) is increased.
From Figure 6, we notice that the CSPACER-variant out-
performs the non-blocking MPI-variant and that the dif-
ference grows for increasing concurrency. On the other
hand, one-sided remote memory access (rma) communi-
cation only performs well at low concurrency and is even in
that case not competitive with the CSPACER-variant.
Therefore, due to the poor scalability of the rma MPI-
variant, we will not further consider this type of
communication.

The upper part of Figure 7 presents the strong-scaling
behavior for the L = 24 problem, while using different
thread counts per node. We notice that the need for full
thread concurrency diminishes as we scale, to the extent we
start seeing performance degradation at high node con-
currency. This behavior could be attributed to an increased
overhead for managing thread pools, for example, barrier
synchronization for the amount of work assigned to the
threads. We notice that the CSPACER-variant suffers less
from performance degradation compared to the MPI-
variant. We attribute that to the former using threading
more efficiently in injecting and progressing multiple
transfer lanes in the interconnect. The corresponding
speedup factors for the CSPACER-variant compared to
MPI-variant are presented in Table 2. We notice that in
almost all situations the CSPACER-variant results in a
significant speedup and, as also shown in Figures 6 and 7,
the speedup factors increase, in general, for increasing
concurrency.

CSPACER has a constant, O(1), complexity in checking
the consistency of the memory space, regardless of the
number of ranks involved in constructing this space. Such a
consistency check is necessary before the data consumer is
able to process incoming data in all-to-all exchange. In
contrast, MPI’s localized all-to-all has a linear, O(r), as-
ymptotic complexity in processing incoming transfers, with
r the number of MPI ranks. The difference manifests at
scale, especially for strong-scaling experiments, where the
runtime overhead plays a significant factor in performance.

CSPACER’s use of threaded injection at the source is not
associated with overhead because the runtime determines
the lock-free concurrency level (Ibrahim, 2021) (injection
lanes) that the application should use.

The lower part of Figure 7 shows the decomposition of
the execution time for the best performing threading con-
figuration for both the MPI- and CSPACER-variants. As
shown, the MATVEC, blue box, exhibits a significant
fraction of the execution time, especially at low concur-
rency. As we strong scale the computation, the allreduce
operations, red box, start contributing significantly to the
execution time. Because the number of elements in
the reduction remains constant, we expect the overhead of
the reduction to increase with the number of nodes. Instead,

Figure 6. Strong scaling of 1 L = 24 LOBPCG iteration with 5000
PCG iterations in single precision.
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we noticed a strong correlation between the variability of the
MATVEC and the allreduce phases. Given that these two
phases are executed consecutively, we conducted an ex-
periment with an extra barrier between them and found that
the barrier captured most of the variability. We omitted this

extra barrier synchronization due to its unnecessary over-
heads in the presented results.

In general, we note that there are multiple sources of
performance variability across nodes in our code. The first is
due to the computational load imbalance originating from
the imperfect partitioning; The second is due to the system
noise through the shared interconnect; The third is due to the
communication runtime. The MATVEC overlap of com-
putation with communication makes it difficult to isolate the
impact of communication from computation imbalance.
Having two runtime implementations allow for classifying
sources of variability better. For instance, the lower vari-
ability of the CSPACER-variant compared to the MPI-
variant shed some light on the minimum variability due
to the MPI runtime. In our experiments, we found the inter-
quartile range for the MATVEC variability for MPI com-
pared to CSPACER to be 1.5× at low concurrency and
reaching 2.7× at 1024 nodes. We also consider the

Figure 7. Strong scaling of 1 L = 24 LOBPCG iteration with 5000 PCG iterations in single precision.

Table 2. L = 24 speedups for the CSPACER-variant compared to
non-blocking MPI communication.

Ranks 256 threads (%) 128 threads (%) 64 threads (%)

16 11.0 10.8 9.9
32 15.3 3.3 �9.5
64 20.3 12.1 0.0
128 24.6 18.0 5.4
256 28.0 24.7 14.4
512 39.2 39.8 26.6
1024 47.0 54.5 45.4
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variability of the CSPACER-variant as an upper limit on the
computation load imbalance.

Figure 8 shows the time decomposition and scaling
behavior with various thread concurrency for the L = 26
problem. The corresponding speedup factors are given
in Table 3. While for L = 24, we noticed performance

advantage for the CSPACER-variant across all concurrency
levels, for L = 26, the performance advantage starts at 128
nodes. This behavior is somewhat expected because the L =
26 problem is associated with a larger volume of data
movement, making the performance less dependent on the
runtime efficiency. In general, we notice similar trends for
the two cases regarding the need to switch to lower thread
concurrency as we scale and the correlation of the MAT-
VEC and allreduce variabilities.

We notice that the optimal threading is problem de-
pendent and is likely to change with the underlying systems.
For L = 24, the advantage for reducing the thread con-
currency manifests at 512 nodes, for L = 26, we need to
change the thread-level at 1024 nodes. Currently, we rely on
empirical measurement to identify the best configuration.
Leveraging the iterative nature of the algorithm, we could
dedicate few iterations for finding the optimal configuration.
Ideally, we need to do such change automatically. We also

Figure 8. Strong scaling of 1 L = 26 LOBPCG iteration with 20,000 PCG iterations in single precision.

Table 3. L = 26 speedups for the CSPACER-variant compared to
non-blocking MPI communication.

Ranks 256 threads (%) 128 threads (%) 64 threads (%)

32 �3.7 �2.9 �0.1
64 6.4 0.2 �2.4
128 16.2 8.5 �7.4
256 21.0 15.8 5.4
512 27.2 24.7 14.9
1024 38.0 35.6 15.1
2048 48.2 44.5 28.7
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notice that the optimal thread choice is dependent on the
communication runtime. For both presented problem con-
figurations, MPI tends to require switching to lower thread
concurrency at lower node count compared to the
CSPACER-variant. The implementation of the latter le-
verages threads to accelerate the communication progress,
which is more advantageous when the number of neigh-
boring ranks increase.

Finally, we compare the overall wall clock time for the
L = 26 problems reported in [18, Table 3]. Using the
combination of (i) graph partitioning for reducing the
communication volume; (ii) runtime optimization via
CSPACER; (iii) performing the MATVECs in the pre-
conditioner only in single precision, we have been able to
significantly increase the scalability of the matrix-free
LOBPCG eigensolver to 1024 nodes. All these tech-
niques together resulted in a speedup factor of 10× so that
the overall wall clock time for computing eigenvalues/
eigenvectors in the middle of the spectrum (30 LOBPCG
iterations with 20,000 PCG iterations as preconditioner) got
reduced from more than 1 day to only 2.5 h.

7. Conclusions

We have presented several strategies to significantly reduce
the computation and communication imbalance within the
matrix-free LOBPCG eigensolver for computing many
eigenvalues and corresponding eigenvectors of large spin
Hamiltonians. Using graph partitioning for reordering
the states, both the total communication volume and the
maximum communication volume per rank reduces and
enhances the scalability of the matrix-free eigensolver.
Although we have only used the METIS partitioning
software in this work, it is possible to use other partitioning
algorithms such as multi-level spectral partitioning methods
(Barnard and Simon, 1994; Zhuzhunashvili and Knyazev,
2017), which can potentially further improve the scalability
of the computations. By combining graph partition-based
matrix reordering with communication performance opti-
mization by using CSPACER, Consistent SPACE Runtime,
we have been able to scale the LOBPCG eigensolver up to
512 and 1024 nodes for L = 24 and 26 spins, respectively.
The numerical experiments have illustrated that the pro-
posed techniques of graph partitioning, runtime optimiza-
tion, and using mixed precision arithmetic, reduce the
overall wall clock time for the L = 26 problem, reported in
(Van Beeumen et al., 2020), by a factor of 10. Because the
MBL study requires solving eigenvalue problems for many
instances of Hamiltonians with random disorder terms, and
computing eigenvalues from different regions of the
spectrum, the overall computation can scale to hundreds of
thousands of computational cores.
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