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The transition between distinct phases of matter is characterized by the nature of fluctuations near
the critical point. We demonstrate that noise spectroscopy can not only diagnose the presence of a
phase transition, but can also determine fundamental properties of its criticality. In particular, by
analyzing a scaling collapse of the decoherence profile, one can directly extract the critical exponents
of the transition and identify its universality class. Our approach naturally captures the presence of
conservation laws and distinguishes between classical and quantum phase transitions. In the context
of quantum magnetism, our proposal complements existing techniques and provides a novel toolset
optimized for interrogating two-dimensional magnetic materials.

Continuous phase transitions exhibit remarkable uni-
versality across disparate physical systems [1–9]. Owing
to the complex interplay between charge, spin and lattice
degrees of freedom, quantum materials have emerged as
a particularly fruitful setting for exploring phase tran-
sitions [10–13]. To fully characterize such critical phe-
nomena, one must accurately measure both static and
dynamical correlations. The diverging length and time
scales at phase transitions require the ability to simul-
taneously probe low energies and momenta. To obtain
such data, one often resorts to one of two broad classes
of experimental probes: scattering techniques, where cor-
relations in the material lead to momentum and energy
shifts on scattered particles (e.g. neutron scattering, Bril-
louin light scattering, magnetic optical Kerr, etc.) [14–
19]; and magnetic resonance techniques, where fluctua-
tions in the material generate frequency shifts on local-
ized probe spins (e.g. µSR, ESR, NMR, etc.) [20–23].

In this Letter, we propose and analyze noise spec-
troscopy as a complementary probe of phase transitions
and critical phenomena at low frequencies and momenta
(Fig. 1c). Our central result is that such spectroscopy
enables one to directly characterize the universality class
of both classical and quantum phase transitions. In par-
ticular, we introduce a simple method to quantitatively
extract critical exponents via the scaling collapse of a
probe qubit’s decoherence profile (i.e. as a function of
experimentally tunable control parameters).

We highlight the flexibility and power of this approach
in three distinct contexts. First, we discuss how the deco-
herence profile captures the presence of symmetries and
conservation laws. Second, we show that the scaling be-
havior of the noise near the transition can efficiently char-
acterize both thermal and quantum phase transitions.
Finally, we demonstrate how our protocol is able to ex-
tract critical exponents—even when the probe qubit is
not directly sensitive to the order parameter of the phase
transition.

Let us begin by introducing the setup considered
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FIG. 1. a) Schematic of the setup: a two-level probe
qubit or qubit ensemble is placed a distance d from a ma-
terial of interest. Fluctuations in the material generate fluc-
tuating fields at the qubit’s location which lead to its deco-
herence. b) Using Ramsey spectroscopy or other generalized
spin echo pulse sequences [24, 25], the qubit’s decoherence dy-
namics can be used to characterize the sample’s fluctuations.
c) A summary of the frequency and length scales accessible
to different experimental techniques highlights the comple-
mentarity of our proposed qubit-based noise spectroscopy (T2

noise). Techniques depicted include: Brillouin light scatter-
ing (BLS) [15], magneto-optical Kerr effect (MOKE) [16], Ra-
man spectroscopy [18], inelastic neutron scattering (INS) [17],
nuclear magnetic resonance (NMR) [20, 21], electron spin
resonance [22], and muon spin resonance (µSR) [23]. d)
Schematic of the qubit’s decoherence dynamics C(τ) =

e−2⟨ϕ2⟩: as the sample is tuned towards the critical point
λ = λc (darker colors, inset), enhanced fluctuations result in
a shorter decoherence time T ∗

2 . More broadly, the decoher-
ence rate and the shape of the profile encode characteristics
of the phase transition, including its location, its critical ex-
ponents, and the presence of additional symmetries, Fig. 2.
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throughout this work (Fig. 1a): a single isolated qubit
(or a qubit ensemble) is located at a distance d above
a sample of interest. The qubit’s energy splitting is
given by ∆0 (with quantization axis n̂) and it couples
to a time-dependent local field B(t) with strength γ:

H(t) = ∆0

2 n̂ ·σ+ γB(t)
2 ·σ, where σα are Pauli operators

[26]. While our discussions are applicable to generic qubit
platforms (i.e. solid-state spin defects, neutral atoms,
trapped ions, superconducting qubits, etc.) coupled to
a fluctuating field (i.e. magnetic, electric, strain, etc.),
to be specific, we will describe our results in the con-
text of a spin qubit coupled to a fluctuating magnetic
field. Three key ingredients relate the properties of the
sample to the decoherence dynamics of the probe spin:
(i) fluctuations within the material, (ii) the geometry,
and (iii) the measurement scheme (i.e. pulse sequence).
The fluctuations of the field source Oα within the sam-
ple (e.g. current density jα or spin-density sα) can be
directly characterized by the dynamic structure factor:

Sαβ(q, ω) =

∫
dt

∫
dr ei(ωt−q·r)⟨Oα(t, r)Oβ(0, 0)⟩T , (1)

where ω is their frequency, q their momentum and ⟨·⟩T
corresponds to the thermal expectation at temperature
T .

The relationship between the dynamics of these
sources, Oα, and the fluctuating magnetic field at the
probe spin location, B(t), is determined by the system’s
geometry. This role of geometry is best understood
as a momentum filter function Wαβ

d (n̂, q) on the sam-

ple’s fluctuations. Because Wαβ
d (n̂, q) is peaked around

q ∼ 1/d, the distance between the qubit and the sample
provides direct control of the qubit’s sensitivity to the
momenta q of the fluctuations [27]. Simultaneously, dif-
ferent quantization axes n̂ allow one to extract different
tensor components of the dynamic structure factor. Akin
to geometry, the measurement scheme induces a par-
ticular filter function, albeit in frequency space, Wτ (ω)
[27]. Previous work has focused on T1-based noise spec-
troscopy [28–40]; where the qubit is prepared along its
quantization axis and its subsequent depolarization dy-
namics are determined by noise at frequency ω = ∆0,
leading to a sharp frequency filter function Wτ (ω) ∼
δ(ω − ∆0). Given our focus on low frequency behavior,
we turn to dephasing-based noise spectroscopy, best ex-
emplified by Ramsey spectroscopy. In this case, the qubit
is prepared in a superposition |ψ⟩ ∝ |↑⟩ + |↓⟩ along the
equator of the Bloch sphere, Fig. 1b. In each experimen-
tal run of duration τ , the magnetic field along the quan-
tization axis, n̂ · B(t) = B(t), causes the qubit to Lar-
mor precess by an angle ϕ = γ

∫ τ

0
dt B(t), (Fig. 1b) [41].

Upon averaging over many experimental runs, the result-
ing density matrix exhibits an off-diagonal term given
by ⟨e−i2ϕ⟩ ≈ e−2⟨ϕ2⟩ (which precisely characterizes the
qubit’s decoherence). If instead a π-pulse is applied in the
middle of the Larmor precession, the phase accumulated

FIG. 2. a) Behavior of the Ramsey decoherence time, T ∗
2 ,

across a phase transition. T ∗
2 exhibits a sharp feature at the

transition, whose details are determined by the presence (or
absence) of a conservation law in the order parameter. b)
Decoherence dynamics in the presence of different symme-
tries (with or without a conserved order parameter) and near
or far from criticality [(d/ξ)2 = 0.001 and (d/ξ)2 = 1]. The
presence of the conservation law modifies the late-time behav-
ior of ⟨ϕ2⟩—from τ log τ to τ3/2. c) Decoherence dynamics
as a function of the distance to sample d and temperature
T for different times τ . ⟨ϕ2⟩ is computed for Ramsey spec-
troscopy in the case of a classical Ising phase transition with
no conservation law. d) By performing a scaling collapse of
⟨ϕ2⟩(d, τ, T ), one can directly extract the critical exponents
of the transition.

becomes ϕecho = γ
[∫ τ/2

0
dt B(t)−

∫ τ

τ/2
dt B(t)

]
, alter-

ing the qubit’s sensitivity to different frequencies. This
effect is precisely captured by the frequency filter func-

tion, Wτ (ω): for Ramsey spectroscopy, W
(Ramsey)
τ (ω) ∝

ω−2 sin2(ωτ/2) is peaked around ω = 0 with width 1/τ .
More intricate pulse sequences, such as spin echo and
CPMG, can be used to tailor the properties of the filter
function [24, 25, 27, 42].
Bringing all these elements together, the qubit’s deco-

herence profile, e−2⟨ϕ2⟩, depends on the pulse sequence
[via Wτ (ω)], the geometry [via Wαβ

d (n̂, q)] and the prop-
erties of the sample of interest [via Sαβ(q, ω)], and can
be cast into a simple formula:

⟨ϕ2⟩ =
∫ ∞

−∞

dω

2π
Wτ (ω)

∫ ∞

0

dq

2π
Wαβ

d (n̂, q)Sαβ(q, ω)

︸ ︷︷ ︸
N (ω)

. (2)

Here, N (ω) denotes the noise spectral density of the fluc-
tuating magnetic field B(t) generated by the sample.
Thermal phase transitions.—Let us begin by explor-

ing how noise spectroscopy enables the study of ther-
mal (or classical) phase transitions. To be specific, we
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focus on Ramsey spectroscopy and spin models in two
dimensions, where the momentum filter function takes
the form Wd(n̂, q) ∼ q3e−2qd [27]. First, we consider
the classical Ising transition in a two dimensional lat-
tice of spins. Although we are ultimately interested in
the structure factor Sαβ(q, ω) close to the transition, it
is more convenient to analyze the behavior of the dy-
namical susceptibility χαβ(q, ω). Fortunately, the two
are intimately connected via the fluctuation-dissipation
theorem: Sαβ(q, ω) = 2T

ω Im[χαβ(q, ω)]. We focus on
α = β = z as it captures the critical correlations of
the Ising order parameter — the coarse-grained mag-
netization density. To understand the fluctuations of
the order parameter, we need to consider the slow re-
laxation dynamics toward equilibrium. These dynamics
are dominated by long-wavelength fluctuations, and can
be accounted for by a simple phenomenological model,
χ−1(ω,q) = χ−1(q)− iω

Γ(q) [2, 9, 43–45], where Γ(q) is the

relaxation rate of the q-Fourier mode. As one approaches
the critical temperature Tc, the order-parameter correla-
tion length, ξ, diverges as |T − Tc|−ν ; within mean-field
theory ν = 1/2 and Szz(q, ω) becomes:

Szz(q, ω) =
2TΓ(q)

Γ(q)2J2(ξ−2 + q2)2 + ω2
. (3)

As perhaps expected, independent of the details of Γ(q),
the magnetic field noise exhibits critical enhancement as
one approaches the transition — Szz(q, ω) monotonically
increases as the correlation length diverges and the min-
imum of the decoherence time T ∗

2 diagnoses the critical
temperature (Fig. 2a).

Crucially, noise spectroscopy enables the direct and
quantitative characterization of critical phenomena,
making it particularly amenable for studying transitions
that deviate from the mean-field expectation. More
specifically, scaling considerations enable the derivation
of an expression for ⟨ϕ2⟩:

⟨ϕ2⟩ = Tτ

d2+η−z
F

(
τ

dz
,
d

ξ

)
, ξ ∝ |T − Tc|−ν (4)

where η is the anomalous scaling exponent, z is the dy-
namical exponent and the scaling function F depends on
details of the dynamics. By varying the distance d, the
time τ and the temperature T (Fig. 2c), one can obtain
a two-parameter scaling collapse for ⟨ϕ2⟩ which immedi-
ately determines the critical exponents (Fig. 2d).

Symmetries and conservation laws.—In addition to ex-
tracting critical exponents, certain qualitative features of
the transition can be obtained from the scaling behavior
of ⟨ϕ2⟩ with τ . As an example, we demonstrate how
our approach naturally distinguishes between transitions
with and without order-parameter conservation; for con-
creteness, let us return to the 2D classical Ising transition
within mean-field theory.

We begin by focusing on the late-time decoherence dy-
namics, ω0τ ≫ 1, where ω0 is the width of the noise

spectral density N (ω) (Eq. 2) [27]. When the order pa-
rameter (i.e. the q = 0 spin component) is not conserved,
its decay rate Γ(q = 0) will be a non-zero constant Γ0,
leading to a dynamical exponent z = 2 [46]. As shown in
Fig. 2b, this implies that ⟨ϕ2⟩ exhibits an (almost) lin-
ear scaling with τ (see Table I). In contrast, when the
order parameter is conserved, its decay rate Γ(q = 0)
must vanish. As a result, the small q behavior of Γ(q) is
quadratic, Γ(q) ∼ σsq

2, corresponding to diffusive spin-
correlations away from criticality. However, at criticality,
the correlation length, ξ, diverges and the spin-diffusion
constant, Ds = σsξ

−2, goes to zero, leading to a dynam-
ical exponent z = 4 as per Eq. (3). Crucially, this results
in a non-analytic behavior of the noise-spectral density
N (ω) ∼ 1/

√
ω at low-frequencies, manifesting itself as

a different late-time scaling, ⟨ϕ2⟩ ∼ τ3/2 (Fig. 2b and
Table I).
A few remarks are in order. First, at short times,

ω0τ ≪ 1, the material dynamics are essentially “frozen”
and the qubit is only sensitive to the static components
of the noise, leading to ⟨ϕ2⟩ ∼ τ2. A complementary
perspective is that the Ramsey filter function is signif-
icantly broader than the noise spectral density and the
probe integrates the response across all frequencies. The
location of the crossover between this early-time behav-
ior and the late-time dynamics (Fig. 2b) provides a direct
measurement of the correlation time associated with the
material’s intrinsic dynamics [47, 48]. Second, the scal-
ing of the qubit’s decoherence time with distance d also
provides insight into the approach to criticality. In par-
ticular, within the critical regime, d ≪ ξ, the qubit’s
decoherence will be relatively insensitive to the sample-
probe distance. In the opposite limit, d≫ ξ, the qubit’s
decoherence exhibits a significantly stronger power-law
dependence on d (see Table I).
Quantum phase transitions.—Let us now turn our at-

tention to quantum phase transitions, where the ground
state exhibits an abrupt, qualitative change upon tuning
some parameter λ (e.g. pressure, electron density, etc.).
The key distinction from the thermal case is the sensi-
tivity of the qubit’s decoherence to the spectral gap, ∆,
which goes to zero at the quantum critical point, λ = λc.
As a result, ⟨ϕ2⟩ still exhibits a simple scaling function,
Ψ, albeit with an additional scaling parameter ∆/T :

⟨ϕ2⟩ = T
2+η−z

z Ψ

(
∆τ,∆d1/z,

∆

T

)
, ∆ ∝ |λ− λc|zν . (5)

In direct analogy to the thermal case, the critical ex-
ponents can be extracted via a scaling data collapse of
the decoherence as a function of any three of the four
parameters: (i) temperature T , (ii) tuning parameter λ,
(iii) sample-probe distance d and (iv) time τ .
Despite their similarities, the quantum and thermal

phase transitions are distinguishable by the temperature
scaling of ⟨ϕ2⟩. Away from criticality (∆/T ≫ 1), the
noise is controlled by thermally activated excitations on
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Nature of
transition

Phase Transition
Paradigmatic

model
Conserved
Quantity

Accessible
critical

exponents

Noise ⟨ϕ2⟩ at
criticality

Noise ⟨ϕ2⟩ away
from criticality

Thermal
Paramagnet

to
Ferromagnet

Ising — ν, η, z
Tτ

Γ0
ln

(
τΓ0

d2

)
Tτξ4

Γ0d4

XXZ Sz ν, η, z
Tτ3/2

√
σs

Tτξ4

σsd2

Quantum

Para to Ferro Ising — η, ν, z T (2+η)/zτ ln
( c

dT 1/z

) τ

d4
e−a2δ/T

Para to AFM Heisenberg S zν
T 3τ

d2
τ

d2
e−a3δ/T

TABLE I. Critical and non-critical scaling of ⟨ϕ2⟩ for paradigmatic models of classical and quantum phase transitions [2] with
temperature T , distance d and time τ , in the limit ω0τ ≫ 1. The scaling behavior of ⟨ϕ2⟩ for the thermal phase transitions
is presented within mean-field theory where η = 0. For quantum transitions away from criticality (T ≪ δ), we do not include

pre-factors of T (since the noise is dominated by the exponential e−δ/T ) [27].

top of the ground state and is exponentially suppressed
in ∆/T leading to ⟨ϕ2⟩ ∼ e−a∆/T for a > 0. Near the
critical point (∆/T → 0), Ψ approaches a constant and
thus ⟨ϕ2⟩ scales as a power-law in temperature. By con-
trast, in classical phase transitions, the noise will always
exhibit power-law correlations with temperature (see Ta-
ble I).

The ability for noise spectroscopy to probe quantum
phase transitions is extremely generic—the qubit does
not need to couple to the order parameter, nor does the
ordered phase need to be gapped. We highlight this flex-
ibility by studying the noise spectroscopy of a different
transition, namely, the continuous symmetry breaking
transition between a quantum paramagnet and a colinear
Néel antiferromagnet in the two-dimensional Heisenberg
model [5, 49–53]. The order parameter for this transition
is the staggered magnetization density which oscillates
at the lattice scale; since this lengthscale is significantly
smaller than the sample-probe distance d, the qubit is in-
sensitive to fluctuations of the order parameter. Rather,
its decoherence is determined by the long-wavelength
fluctuations of the spin density, which remain conserved
owing to the Hamiltonian’s SO(3) spin-rotation symme-
try. Consequently, the dynamic structure factor takes a

simple diffusive form, Szz(q, ω) = 2TχuDsq
2

ω2+(Dsq2)2 (analogous

to Eq. 3) with diffusion constant Ds and uniform static
susceptibility χu; at late times, the decoherence dynam-
ics take on a simple form ⟨ϕ2⟩ ∝ Tτ

d2
χu

Ds
that depends

only on the ratio χu

Ds
. The key ingredient that deter-

mines both χu and Ds on either side of this quantum
transition is an intrinsic energy scale δ — in the anti-
ferromagnet δ = ρs is the spin stiffness associated with
creating spatially non-uniform textures of the order pa-
rameter, while in the paramagnet δ = ∆ is simply the
spectral gap. Specifically, in the vicinity of the transi-
tion, both Ds and χu are universal functions of the ratio
between the energy scale δ and temperature T , and thus

the decoherence is controlled by δ/T [5, 52, 53].

We are now in a position to understand how noise spec-
troscopy can characterize this transition. First, let us fo-
cus on the regime away from criticality (T ≪ δ). In this
case, decoherence becomes suppressed with temperature
owing to a divergent diffusion coefficient Ds ∼ eδ/T and
a non-divergent susceptibility χu [27]. By fixing T and
τ and varying λ, the combined critical exponents, zν,
can be extracted from the stretched exponential decay of
⟨ϕ2⟩ ∼ (τ/d2)e−a3|λ−λc|zν/T . On the other hand, in the
quantum critical regime (T ≫ δ and λ ∼ λc), temper-
ature is the only relevant energy-scale that determines
both χu and Ds, and thus, the scaling of the decoher-
ence is simply a power-law in temperature, ⟨ϕ2⟩ ∼ T 3

[27]. This provides a clear, quantitative signature that
the system is in the critical regime.

A few remarks are in order. First, the detection of crit-
ical exponents in the absence of direct coupling between
the qubit and the order parameter can also be applied to
thermal phase transitions. Second, given the sensitivity
of the low-energy physics to underlying symmetries, the
ability to carefully probe such dynamics could enable the
diagnosis of symmetry-breaking interactions. Third, we
have thus far, restricted our analysis to Gaussian noise,
where two-point correlations are sufficient to fully de-
scribe the probe qubit’s decoherence. The presence of
higher-order moments in the noise distribution can affect
the dynamics, especially near the transition, where ξ ≳ d.
Interestingly, one can obtain the corresponding scaling
forms and isolate these non-Gaussian contributions via
pulse-sequence engineering [27, 54–56]. Finally, for some
materials, the surface and bulk degrees of freedom can
exhibit distinct critical phenomena, altering the probe
qubit’s decoherence dynamics [57–59]. In this context,
the sample-probe distance determines the relative con-
tributions of surface and bulk fluctuations to the qubit’s
decoherence and can be used to isolate and characterize
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each transition separately. However, to quantitatively
characterize both critical phenomena, a more nuanced
scaling theory is required.

Experimental blueprint.—Our protocol can be applied
to investigate a variety of critical phenomena, ranging
from ferroelectric ordering [38, 60] and structural phase
transitions [59, 61–63], to magnetic ordering [64–66] and
superconductivity [35, 36, 67, 68]. In what follows, we
highlight our approach in the context of magnetic in-
sulators probed via solid-state, electronic spin defects.
We focus on two particular defects — the negatively
charged boron vacancy (V −

B ) in hexagonal boron nitride
(hBN) [69–72] and the Nitrogen-Vacancy (NV) color cen-
ter in diamond [73–75] — with the goal of highlighting
their complementary operating modalities. The former
can be created within flakes of hBN that are directly
placed on a sample of interest [71], while the latter can
be embedded within the tip of a (diamond) cantilever
and used as a scanning probe [76–79]. Both defects fea-
ture spin S = 1 electronic ground states with zero-field
splittings in the ∼GHz regime (Fig. 1c). Two spin states
(forming our probe qubit) can be isolated by either re-
solving the hyperfine interaction or via an external mag-
netic field. The frequency range of T2-based noise spec-
troscopy, ∼kHz-MHz, is limited by the defect’s local en-
vironment and the achievable Rabi frequency for pulsed
control [80–84].

Both NV centers and V −
B defects are particularly well-

placed for studying two-dimensional magnetic materi-
als. As an example, consider monolayer CrI3, a two-
dimensional magnet with an Ising transition at Tc ≈ 45 K
[85–89]. We estimate that in the diffusive regime, the
sampled-induced decoherence time will be approximately,
T echo
2 ≈ 5 µs (using T ≈ 60 K and d = 10 nm) [27], with

critical fluctuations near the transition further reducing
this value [90]. Crucially, this additional noise domi-
nates over the NV’s intrinsic decoherence, T echo

2 ∼ 100 µs
[84, 91], enabling its detection. Zooming out, the broader
landscape of van der Waals heterostructures and moiré
materials offers a wide range of correlated insulators and
magnetic transitions to explore [92, 93]. For example,
pressure-driven quantum critical points in two dimen-
sional materials, such as FeSe [94, 95], as well as strain-
tuned magnetic transitions in monolayer metallic halides,
such as the aforementioned CrI3 [96], can be accessed by
directly incorporating the NV center into diamond anvil
cells [59, 67, 97], while magnetic domain formation can
be imaged in situ by directly incorporating V −

B into the
hBN that encapsulates many 2D materials [98, 99]. Si-
multaneously, the detection and characterization of spin
and charge fluctuations can elucidate the nature of the
magnetic order in twisted bilayer graphene [100–106], as
well as shed light into the continuous Mott transition re-
cently observed in moiré transition metal dichalcogenides
[93, 107, 108].

Acknowledgements.—We gratefully acknowledge dis-

cussions with and the insights of K. Akkaravarawong, E.
Davis, Z. Dai, S. Hsieh, J. R. Nieva, S. Whitsitt, M. P. Za-
letel and C. Zu. This work was supported in part by the
U.S. DOE, Office of Science, Office of Advanced Scientific
Computing Research, under the Accelerated Research in
Quantum Computing (ARQC) program, the US Depart-
ment of Energy (Award No. DE-SC0019241), the ARO
through the MURI program (grant number W911NF-17-
1-0323), the David and Lucile Packard Foundation, the
Alfred P. Sloan foundation. F.M. acknowledges support
from the NSF through a grant for ITAMP at Harvard
University. E.D. acknowledges support from the Swiss
National Science Foundation under Division II.

[1] L. D. Landau and E. M. Lifshitz, Statistical Physics:
Volume 5, Vol. 5 (Elsevier, 2013).

[2] J. Cardy, Scaling and renormalization in statistical
physics, Vol. 5 (Cambridge university press, 1996).

[3] N. Goldenfeld, Lectures on phase transitions and the
renormalization group (CRC Press, 2018).

[4] P. Coleman, Introduction to Many-Body Physics (Cam-
bridge University Press, 2015).

[5] S. Sachdev, Quantum phase transitions, Handbook of
Magnetism and Advanced Magnetic Materials (2007).

[6] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Sha-
har, Continuous quantum phase transitions, Rev. Mod.
Phys. 69, 315 (1997).

[7] T. Vojta, Quantum phase transitions in electronic sys-
tems, Annalen der Physik 9, 403 (2000).

[8] M. Vojta, Quantum phase transitions, Reports on
Progress in Physics 66, 2069 (2003).

[9] P. C. Hohenberg and B. I. Halperin, Theory of dynamic
critical phenomena, Rev. Mod. Phys. 49, 435 (1977).

[10] B. Keimer and J. Moore, The physics of quantum ma-
terials, Nature Physics 13, 1045 (2017).

[11] D. Basov, R. Averitt, and D. Hsieh, Towards properties
on demand in quantum materials, Nature materials 16,
1077 (2017).

[12] W. Li, X. Qian, and J. Li, Phase transitions in 2d ma-
terials, Nature Reviews Materials 6, 829 (2021).

[13] F. Giustino, J. H. Lee, F. Trier, M. Bibes, S. M. Win-
ter, R. Valent́ı, Y.-W. Son, L. Taillefer, C. Heil, A. I.
Figueroa, et al., The 2021 quantum materials roadmap,
Journal of Physics: Materials 3, 042006 (2021).

[14] L. Van Hove, Time-dependent correlations between
spins and neutron scattering in ferromagnetic crystals,
Phys. Rev. 95, 1374 (1954).

[15] F. Kargar and A. A. Balandin, Advances in Brillouin-
Mandelstam light-scattering spectroscopy, Nature Pho-
tonics 15, 720 (2021).

[16] T. Haider, A review of magneto-optic effects and its
application, Int. J. Electromagn. Appl 7, 17 (2017).

[17] D. L. Price and F. Fernandez-Alonso, An introduction
to neutron scattering, in Experimental Methods in the
Physical Sciences, Vol. 44 (Elsevier, 2013) pp. 1–136.

[18] P.-H. Tan, ed., Raman Spectroscopy of Two-
Dimensional Materials, Springer Series in Materials
Science, Vol. 276 (Springer, 2019).

[19] T. X. Zhou, J. J. Carmiggelt, L. M. Gächter, I. Es-
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DEFINING THE FILTER FUNCTIONS

In this section, we define the frequency and momentum filter functions [Wτ (ω) and Wαβ
d (n̂, q) respectively], and

derive the central equation for decoherence dynamics of the spin qubit — Eq. (2) in the main text.
We start with the qubit Hamiltonian:

H(t) =
∆0

2
n̂ · σ +

γB(t)

2
· σ (1)

and start by considering a simple Ramsey sequence. In this case, the qubit is initialized at t = 0 in the superposition
|+⟩ = (|↑⟩+ |↓⟩)/

√
2, and then allowed to evolve under a time dependent dephasing field B(t) = B(t) · n̂ that points

along the quantization axis n̂—we assume that the zero-field splitting ∆0 is much larger than the local field γB(t).
In the rotated frame of reference (w.r.t. the zero-field splitting ∆0 of the qubit), the density matrix at time t is given
by:

ρ(t) =
1

2

(
eiϕ |↑⟩+ e−iϕ |↓⟩

) (
e−iϕ ⟨↑|+ eiϕ ⟨↓|

)
, where ϕ(t) =

γ

2ℏ

∫ t

0

dt′B(t′) (2)

At t = τ , the off-diagonal (coherence) element of the density matrix is measured, and this measurement is repeated for
many realizations of the magnetic field noise. From Eq. (2), this is given by ⟨e2iϕ(τ)⟩. Assuming that the probability
distribution for magnetic field fluctuations is Gaussian with zero-mean, we can write the ensemble average as:

⟨e2iϕ(τ)⟩ = e−2⟨ϕ2(τ)⟩, where ⟨ϕ2(τ)⟩ =
( γ
2ℏ

)2 ∫ τ

0

dt1

∫ τ

0

dt2 ⟨B(t1)B(t2)⟩ (3)

Frequency filter function

If the magnetic field fluctuations arise from spin fluctuations in a nearby sample in thermal equilibrium, we expect
the magnetic field correlations to be time-translation invariant. This implies that the correlation function can be
written in terms of a noise spectral density N (ω) as follows:

⟨B(t1)B(t2)⟩ =
∫ ∞

−∞

dω

2π
e−iω(t1−t2)N (ω) (4)

Using this relationship, we can relate ⟨ϕ2⟩ (suppressing the argument τ for ease of notation) to the noise spectral
density as:

⟨ϕ2⟩ =
∫ ∞

−∞

dω

2π
Wτ (ω)N (ω) (5)

where for Ramsey/T ∗
2 : Wτ (ω) =

( γ
2ℏ

)2 ∣∣∣∣
∫ τ

0

dt eiωt

∣∣∣∣
2

=
( γ
2ℏ

)2(4 sin2(ωτ/2)

ω2

)
(6)

Note that for T ∗
2 , the frequency filter function Wτ (ω) is peaked at ω = 0, with peak height ∼ τ2 and width ∼ 1/τ .

Thus, the decay of coherence, characterized by ⟨ϕ2⟩ is mainly determined by the spectral density ofN (ω) for |ω| ≲ 1/τ ,
as argued in the main text.
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FIG. S1. Schematic of the CPMG pulse sequence. After initialization, the first π-pulse is applied after τ/2N time has elapsed.
Afterwards, a π pulse is applied every τ/N until the measurement is performed at τ .

We now proceed to derive the filter function for more complicated pulse sequences, which enable sharper frequency-
selective of N (ω). For simplicity, we will neglect the possibility of imperfection in these pulses, i.e, we will assume
them to be instantaneous and exact. While such imperfections are necessarily present in any experiment, the details
of the pulse sequences can be chosen to minimize the effect of imperfections [1, 2], and this allows us to focus on a
perfectly executed pulse sequence to derive simple analytic results. Specifically, let us consider the CPMG sequence
— a generalized spin-echo sequence of N instantaneous π-pulses about the x̂ axis (initial direction of the qubit spin),
separated from each other by τ/N and separated from the start and end of the sequence by τ/(2N) (see Fig. S1).
Each such π-pulse, in the rotating frame of the qubit, changes the sign of the Hamiltonian (H → −H), so that the
phase accumulation is negative after an odd number of π-pulses and positive otherwise. Accordingly, the sequence
filter function is given by:

Wτ (ω) =
( γ
2ℏ

)2
∣∣∣∣∣

(∫ τ/2N

0

dt e−iωt

)
+

(
N−1∑

n=1

(−1)n
∫ τ

N (n+1/2)

τ
N (n−1/2)

dt e−iωt

)
+ (−1)N

(∫ τ

τ−τ/2N

dt e−iωt

)∣∣∣∣∣

2

= (7)

=
( γ
2ℏ

)2 16

ω2

sin4 ωτ
4N

cos2 ωτ
2N




cos2 ωτ

2 N odd

sin2 ωτ
2 N even

(8)

The N = 1 case corresponds to Hahn-echo (T2), with Wτ (ω) = (2γ/ℏ)2 sin4(ωτ/4)/ω2, which is peaked at ω ∼ π/τ
with peak height ∼ τ2 and width ∼ 1/τ . We can also consider the large N -limit at fixed interpulse frequency
ωp = πN/τ . In this regime, Wτ (ω) is sharply peaked at ωp, with width ∼ ωp/N . In this limit, we can approximate
Wτ (ω) by a sum of Dirac-delta functions as follows:

lim
N,τ→∞
Nπ/τ=ωp

Wτ (ω) = τ
(γ
ℏ

)2( 2

π

) ∞∑

n=0

δ [ω − (2n+ 1)ωp]

(2n+ 1)2
(9)

where we have fixed the overall coefficient by demanding that our approximation conserves the total weight∫
dωWτ (ω). This form of the frequency filter function substantiates the claim of enhanced frequency selectivity

via CPMG sequences in the main text. The presence of higher harmonics stems from the simplicity of the CPMG
pulse sequence; by studying more complicated pulse sequences one can further isolate the lower frequency δ-function
from the higher harmonics. Alternatively, one can compare the decoherence dynamics under different pulse sequences
and isolate the low frequency contribution [3].

Let us conclude by writing down the general expression of the filter function. In general, each application of a
π-pulse changes the sign of the Hamiltonian in the qubit’s rotating frame. Let us define f(t) as the function that
keeps track of the sign of the Hamiltonian; at time t, f(t) = +1 if the sign of the Hamiltonian is positive and f(t) = −1
if the sign of the Hamiltonian is negative. Then the filter function is then simply given by:

Wτ (ω) =
( γ
2ℏ

)2 ∣∣∣∣
∫ τ

0

dt e−iωtf(t)

∣∣∣∣
2

(10)

Momentum filter function

Next, we derive the momentum filter function Wαβ
d (n̂, q), which characterizes relates the fluctuations in the sample

Sαβ(q, ω) to the noise spectral density N (ω) of the local field B(t). Therefore we need an appropriate quantum
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generalization of the classical correlations of the magnetic field in Eq. (4), which may be obtained by replacing the
classical correlator by the quantum anticommutator as follows:

N (ω) =

∫ ∞

−∞
dt eiωt⟨B(t)B(0)⟩ → 1

2

∫ ∞

−∞
dt eiωt⟨{B̂(t), B̂(0)}⟩ (11)

In Eq. (11), we denoted the field by B̂ to emphasize that these are operators that relate to fluctuations of the
quantum sources in the sample, that may behave classically or quantum mechanically. However, in the rest of the
text we will simply write B and the classical/quantum limit is to be understood from the context. For computational
convenience, we use the relation between the noise spectral density to the retarded correlation function via the
fluctuation-dissipation theorem for temperature T (β = 1/kBT ).

N (ω) = ℏ coth

(
βℏω
2

)
(−Im [CBB(ω)]) (12)

where CBB(ω) =
∫∞
−∞ dt eiωtCBB(t) is the Fourier transform of the retarded field-field correlation function CBB(t) =

−iθ(t)⟨[B(t), B(0)]⟩β . What remains is to relate the local field B(t) correlations to the source correlations in the
sample. To this end, we specialize to the case where the local field is magnetic in nature and arises from fluctuation
of spins or currents in the sample—while different fields will exhibit different propagators, this does not alter the
prescription presented here. In this case, the fields and the sources are related via Maxwell’s equations; we turn to
their analysis next.

Both electrical current-fluctuations and spin-fluctuations in the sample can act as a source for magnetic field noise.
For simplicity, we focus on insulating materials with a large gap to charged excitations in the temperature range of
interest, and consider the dipolar magnetic field generated by spin-degrees of freedom S(ri) on a lattice (we scale each
spin by ℏ so that S(ri) is dimensionless).

Bα(rqubit, t) = µ0µBgs
∑

ri

Hαβ(rqubit − ri)S
β(ri, t), where Hαβ(r) =

1

4π

(
3rαrβ − r2δαβ

r5

)
(13)

Note that we have neglected retardation effects, i.e, taken the limit of infinite speed of light c so that the propagator
Hαβ is instantaneous (for further discussion on this point, see Ref. 4). Assuming a large two-dimensional sample at
the x-y plane, we can take advantage of translation invariance: this allows us to position the qubit at rqubit = (0, 0, d)
and move to momentum space to calculate correlations. To this end, we define spatial Fourier transforms for two
dimensional momentum q, as follows:

Bα(rqubit, t) =
1√
N

∑

q

e−iq·rqubitBα(q, t), Hαβ(rqubit − ri) =
1

N

∑

q

e−iq·(rqubit−ri)Hαβ(q), and

Sβ(ri, t) =
1√
N

∑

q

e−iq·riSβ(q, t), such that Bα(q, t) = µ0µBgsHαβ(q)S
β(q, t) (14)

where N decribes the number of sources in the system and Hαβ(q) may be found by Fourier transforming by the
dipolar propagator (see Ref. 5 for details):

Hαβ(q) =
e−|q|d

2a2




q2x
|q|

qxqy
|q| iqx

qxqy
|q|

q2y
|q| iqy

iqx iqy −|q|


 (15)

where a is the lattice spacing (assuming square lattice). For concreteness we set the qubit quantization axis n̂ = ẑ,
which implies that the relevant field correlator take the following form:

⟨{B(t), B(0)}⟩ = 1

N

∑

q

Hzα(q)Hzβ(−q)⟨{Sα(q, t)Sβ(−q, 0)}⟩β (16)

where we have used translation invariance of the spin-spin correlation functions. Further assuming rotational in-
variance of low-energy correlations (or conservation of total Sz by the sample Hamiltonian, see Ref. 4), we find the
following the noise spectral density in the continuum limit only depends on three terms.

N (ω) =
ℏ(µ0µBgs)

2

4a2
coth

(
βℏω
2

)∫ ∞

0

dq

2π
q3e−2qd

(
Im

[
1

2
(χ+−(q, ω) + χ−+(q, ω)) + χzz(q, ω)

])
(17)
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where we have used the conventional definition of the retarded spin-spin correlation function [6]:

χαβ(q, ω + i0+) =

∫ ∞

−∞
dt ei(ω+i0+)tχαβ(q, t), and χαβ(q, t) =

iθ(t)

ℏ
⟨[Sα(q, t), Sβ(−q, 0)]⟩β (18)

We will mostly be interested in critical fluctuations of Sz, and therefore often use the shorthand χzz(q, ω + i0+) =
χ(q, ω) and neglect the χ+−/χ−+ terms in Eq. (17). These latter terms are known to be important for detecting
quasiparticle physics away from the critical point [4, 5], but are expected to be subdominant to χzz in the vicinity
of the critical point. Further, in the experimentally relevant regime, we always have βℏω ≲ 10−2, since the largest
frequencies considered, ω ≲ 1 GHz, are much lower than the smallest temperatures, T ∼ 1 K. In this limit, the
retarded spin-spin correlator and the dynamic spin-structure factor S(q, ω) ≡ Szz(q, ω) are simply related by the
fluctuation dissipation theorem [6, 7]:

S(q, ω) =

∫ ∞

−∞
dt
∑

ri

ei(ωt−q·ri)⟨Sz(ri, t)Sz(0, 0)⟩ =
(

2ℏ
1− e−βℏω

)
(Im[χ(q, ω)])

βℏω→0−−−−−→ 2

βω
(Im[χ(q, ω)]) (19)

Using these approximations further allows us to relate the noise spectral density N (ω) to the dynamic spin-structure
factor S(q, ω) via a momentum filter function Wd(q):

N (ω) =

∫ ∞

0

dq

2π
Wd(q)S(q, ω), where Wd(q) ≡W zz

d (ẑ, q) =
(µ0µBgs)

2

4a2
q3e−2qd (20)

This completes our derivation of Eq. (2) in the main text.
For calculating the dynamic spin-structure factor, we will often use a continuum field-theory where we define S(q, ω)

with an integral over two-dimensional space (
∫
d2r) rather than a sum of lattice sites (

∑
ri
), as in Eq. (19). We can

account for this simply by taking Wd(q) → Wd(q)/a
2 in Eq. (20) (since

∑
ri

→
∫
dr/a2 in continuum). Finally, we

comment that for a thin film with many weakly-intercorrelated layers, the total noise can be found by simply summing
the noise from each layer. Operationally, this amounts to taking e−2qd →∑

ℓ e
−2qdℓ inWd(q), where dℓ is the distance

of the ℓth layer from the probe qubit.

EFFECT OF NOISE-INDUCED T1 DEPOLARIZATION

Although our analysis has focused on the the decoherence dynamics of the probe qubit, the presence of noise at the
resonance frequency leads to depolarization that affects the overall signal—this depolarization effect lies at the heart
of previously proposed T1 noise spectroscopy techniques [4, 5, 8–17].

Crucially, such depolarization effect simply induces an overall decay of the observed signal, rather than imparting
any additional features. This relies on the fact that the depolarization decay depends on the bare frequency splitting
of the qubit probe and not on the frequency (∼ 1/τ)) of the pulse sequence applied to study the decoherence dynamics.

To make this claim more precise, we can analyze the qubit probe dynamics using a master equation formalism that
includes depolarization via a simple Linbladian term. We work in the rotating frame of the zero field splitting, whose
eigenstates are {|g⟩ , |e⟩} (the ground and excited states, respectively); σz is Pauli operator that acts diagonally in
this basis.

dρ

dt
= −γB(t)

i2ℏ
[σz, ρ]−

1

2T1
{|g⟩ ⟨g| ρ+ ρ |g⟩ ⟨g| − 2 |g⟩ ⟨e| ρ |e⟩ ⟨g|+ |e⟩ ⟨e| ρ+ ρ |e⟩ ⟨e| − 2 |e⟩ ⟨g| ρ |g⟩ ⟨e|} (21)

Focusing on the dynamics of the coherence term ρ12; when there is an equal population in both levels ρgg = ρee =
1
2

(as considered in our setup), we have:

dρge
dt

=

[
− 1

T1
− i

γB(t)

ℏ

]
ρge (22)

From Eq. (22), it is straightforward to understand the effect of depolarization noise: on top of the dynamics
generated by the local field B(t), the coherence (measured by ρge), experiences an overall decay rate 1/T1. Since this
depolarization rate can be independently measured (by preparing the system in either |↑⟩ or |↓⟩ and watching the
subsequent equilibration), the decoherence dynamics can be isolated. In practice, the depolarization time, T1, will
induce an effective upper limit in the amount of time the decoherence dynamics can be investigated; beyond T1, the
signal is exponentially suppressed requiring an exponentially large number of measurements to extract it from the
noise background.
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NOISE AT THERMAL TRANSITIONS

In this section, we elaborate on our discussion of decoherence in the vicinity of thermal transitions. We first
provide a complimentary picture based on a real-space and real-time approach that allows a heuristic derivation of
the scaling of Gaussian decoherence close to the transition for a Ramsey pulse sequence. We then explicitly derive
the scaling functions within mean-field theory and generalize to include fluctuations beyond mean-field. Finally, we
discuss generalizations to more complicated pulse sequences, using CPMG as a specific example. For all subsequent
discussion, we have set ℏ = 1 = kB .

Real-time, real-space picture: Let us focus on thermal phase transitions in a two dimensional magnetic insulator a
distance d from the probe; in this case, noise arises from the dipolar fields of fluctuating spins. For a Ramsey (T ∗

2 )
sequence, we then have:

⟨ϕ2⟩ ∼
∫ τ

0

dt

∫ τ

0

dt′
∫

r∈A
dr

∫

r′∈A
dr′
〈
Sr(t)

d3
Sr′(t

′)
d3

〉
=

τ

d4

∫ τ

0

dt

∫
dr ⟨Sr(t)S0(0)⟩ (23)

where we have used translation[time-translation] invariance to pull out a factor of d2[τ ], and A ≈ d2 indicates that the
qubit placed at distance d is (roughly) sensitive to an area of the order of d2 on the sample. The spatial integral can
then scale in two distinct ways: i) if the sample probe distance d is larger than the spin-correlation length ξ (typically
the case away from the critical regime), then the spatial integral roughly contributes ξ2, ii) if instead d ≪ ξ, then it
contributes d2. Analogously, the temporal-integral can also exhibit two distinct scaling regimes: i) if the time-scale
τ of measurement is much smaller than the inverse typical frequency scale that sets the approach to equilibrium
from small perturbations, τω0 ≪ 1, then we are insensitive to the dynamics and the qubit effectively measures
equal-time correlations, ⟨Sr(0)S0(0)⟩; ii) if instead, τω0 ≫ 1, the time-integral contributes

∫∞
0
dte−ω0t ∼ ω−1

0 . These
considerations can be combined into a simple scaling for ⟨ϕ2⟩ (when using the Ramsey sequence):

⟨ϕ2⟩ ∝ τ2

d2
×min

(
1,

1

ω0τ

)
×min

(
1,
ξ2

d2

)
(24)

While the above derivation assumed exponential decay of correlations, the long-time scaling in Eq. (24) may be
modified when the correlations only fall-off as a power law ∼ (ω0t)

−α at large times with 0 < α < 1, implying that the
time-integral contributes τ(ω0τ)

−α. For example, at mean-field level, the critical Ising model with Sz conservation is
characterized by α = 1/2 which corresponds to ⟨ϕ2⟩ scaling as τ3/2/

√
ω0 at large τ .

Critical physics is characterized by a diverging correlation length ξ ∼ |T − Tc|−ν , and a vanishing energy scale
Ω0 ∼ |T − Tc|zν corresponding to ‘critical slowing down’. The qubit is sensitive to a noise-spectral density which is
usually a Lorentzian with width ω0 ≈ Ω0 in the large d limit (with corrections of order d−1 or higher). Therefore,
Eq. (24) implies that as we tune T towards Tc, ω0 decreases; correspondingly the decoherence rate increases and
finally saturates sufficiently close to criticality as the qubit loses sensitivity to dynamics happening at even longer
time-scales and length-scales. Further, knowing the frequency scale ω0 (as a function of d and T ) and the correlation
length ξ enables us to predict the scaling of ⟨ϕ2⟩ with distance d, time τ , and temperature T . With this intuition
in hand, we next turn to phase transitions in insulating magnets, and derive concrete expressions for ⟨ϕ2⟩ within
mean-field theory, as presented in Table I of the main text.

Mean-field theory: Dynamics at classical phase transitions is typically studied using stochastic dynamical models,
which provide a phenomenological description of relaxational dynamics of coarse-grained order parameters [18–22].
This approach is governed by two main principles: i) at long times, the system relaxes to the appropriate equilibrium
Gibbs distribution, and ii) symmetries of the original Hamiltonian are respected in the coarse grained model. This
leads to a hydrodynamical theory that includes additional slow ’critical’ modes near the critical point—the correlators
of these slow modes are the quantities we are primarily interested in. Specifying to phase transitions in magnetic
insulators, let us consider two different Ising transitions with two different symmetries. In both cases, the order
parameter is Sz, and on lowering T there is a phase transition from a paramagnet with ⟨Sz⟩ = 0 to an Ising ferromagnet
with ⟨Sz⟩ ≠ 0. However, depending on whether the order parameter is microscopically conserved on not (e.g. because
there is an additional U(1) symmetry), we have different relaxation dynamics and thus ⟨ϕ2⟩ exhibit distinct behaviors
near the critical point. Note that, since we consider discrete symmetry breaking, there are no Goldstone modes on
the ordered side. As a result, ⟨ϕ2⟩ behaves qualitatively the same when approaching the critical point from either
side of the transition.
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Model A: We first consider the case Ising order parameter is not conserved by the microscopic Hamiltonian (model
A in the Halperin-Hohenberg taxonomy [22]), an example would be a fully anisotropic exchange Hamiltonian:

HA = −
∑

⟨ij⟩
JxS

x
i S

x
j + JyS

y
i S

y
j + JzS

z
iS

z
j , with Jz > Jy > Jx > 0 (25)

As alluded to earlier, we write down a stochastic differential equation governing the time-evolution of the coarse
grained order parameter φ(r, t) ∼ Sz

ri(t)/S (S is the magnitude of spin):

∂tφ(r, t) = −Γ0
δF

δφ(r, t)
+ ζ(r, t), with F =

∫
dr

[
J

(
1

2
(∇φ)2 + r

2
φ2 +

u

4
φ4 + ...

)
− h(r, t)φ(r, t)

]
(26)

where F is an effective Ginzburg-Landau free-energy, J ≈ Jz sets the overall energy scale, h(r, t) is an external
field that couples linearly to the order parameter, and the white noise ζ(r, t) (coming from short wavelength, fast
fluctuations) satisfies the following condition on the long wavelengths and timescales of our interest:

⟨ζ(r, t)⟩ = 0 and ⟨ζ(r, t)ζ(r′, t′)⟩ = 2TΓ0 δ(r− r′) δ(t− t′) (27)

Within mean-field theory we set u = 0, and r = ξ−2 ∝ |T −Tc| quantifies the distance from the critical point (ξ being
the correlation length that diverges at T = Tc). The equation for the (q, ω) Fourier mode of φ reads:

−iωφ(q, ω) = −Γ0J(q
2 + ξ−2)φ(q, ω) + Γ0h(q, ω) + ζ(q, ω), where φ(q, ω) =

∫
dt

∫
dr ei(q·r−ωt)φ(r, t) (28)

We can now evaluate the dynamic susceptibility χ(q, ω):

χ(q, ω) =
∂⟨φ(q, ω)⟩
∂h(q, ω)

∣∣∣∣
h=0

=
Γ0

Γ0J(ξ−2 + q2)− iω
=

[
χ−1(q)− iω

Γ0

]−1

, with χ−1(q) = J(ξ−2 + q2) (29)

We note that in the static limit ω → 0, we recover the static correlator χ(q) ≡ χ(q, ω = 0); the uniform static
correlator [χu ≡ χ(0, 0)] diverges at the critical point, resulting in a gapless mode that enhances the noise. The
dynamic structure factor follows from the fluctuation dissipation theorem:

S(q, ω) =
2T

ω
Im[χ(q, ω)] =

2TΓ0

Γ2
0J

2(ξ−2 + q2)2 + ω2
(30)

We can in principle find the scaling of ⟨ϕ2⟩ in different regimes by just plugging this into Eq. (2) in the main text,
which we recall here for completeness:

⟨ϕ2⟩ =
∫
dω

2π
Wτ (ω)

∫ ∞

0

dq

2π
Wd(q)S(q, ω)

︸ ︷︷ ︸
N (ω)

, where Wd(q) ∝ q3e−2qd (31)

While the general expression for ⟨ϕ2⟩ as a function of d, τ and T can be obtained by numerical integration (analytically,
they assume a non-transparent hypergeometric form), here we focus on a few simple asymptotic limits. We will find
that all these asymptotic scalings can also be obtained by simply substituting the typical frequency scale ω0 =
Γ0J(ξ

−2 + d−2), for typical q ∼ d−1, within the noise spectral density N (ω) in our heuristic formula in Eq. (24).
First, consider the limit when d ≫ ξ, a regime that typically holds away from criticality as the correlation length

ξ is small. In this case, we can neglect the momentum-dependence of S(q, ω) in Eq. (30), as it is well-approximated
by its uniform (q = 0) value in the regime where Wd(q) is appreciably large, and exhibits a typical frequency width
ω0 ≈ Γ0Jξ

−2. Therefore, we can carry out the momentum integral, which yields:

⟨ϕ2⟩ ≈ T

(∫
dω

2π

Wτ (ω)Γ0

Γ2
0J

2ξ−4 + ω2

)(∫
dq

2π
Wd(q)

)
≈ TΓ0

d4

∫
dω

2π

Wτ (ω)

Γ2J2ξ−4 + ω2
(32)

When performing Ramsey spectroscopy, if the width τ−1 of the frequency filter function is narrow on the scale of ω0,
then we can approximateWτ (ω) ∝ τδ(ω). In contrast, if the width ofWτ (ω) is large such that τ−1 ≫ ω0, then we can
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instead replace Wτ (ω) by its ω → 0 limit of ∝ τ2; here we integrate over the entire noise spectrum and consequently
capture the static correlation function:

⟨ϕ2⟩ ≈





[
Tτξ2

Jd4

]
ξ2

Γ0J
ω0τ ≫ 1

[
Tτξ2

Jd4

]
τ ω0τ ≪ 1

(33)

Both cases in Eq. (33) are reproduced by our heuristic formula in Eq. (24) by substituting ω0 = Γ0J(d
−2 + ξ−2), and

taking appropriate limits.
Next, let us consider the critical regime (or small distances) such that d≪ ξ. In this case, momentum dependence of

S(q, ω) needs to be taken into account more carefully. When τ is large such that ω0τ ≫ 1, the dominant contribution
from N (ω) comes at low frequencies. Defining a dimensionless momentum, q̄ = qd, we can capture the leading
divergence in N (ω) as follows:

N (ω) =
2T

Γ0d4J2

∫ ∞

0

dq̄
q̄3e−2q̄

q̄4 + (ωd2/Γ0J)
2 ≈ 2T

Γ0J2
ln

(
Γ0J

ωd2

)
when ω → 0 (34)

Integrating against Wτ (ω) now yields an additional logarithmic correction to the heuristic formula in Eq. (24):

⟨ϕ2⟩ ≈ 2Tτ

Γ0J2
ln

(
Γ0Jτ

d2

)
, ω0τ ≫ 1 and d≪ ξ (35)

In the opposite limit ω0τ ≪ 1, it is more convenient to switch the order of integrals in Eq. (31), and do the frequency
integral first after Taylor expandingWτ (ω), whereby we recover the static structure factor at criticality (as expected).

∫
dω

2π
Wτ (ω)S(q, ω) ≈ τ2

∫
dω

Γ0

Γ2
0J

2q4 + ω2
=

2T

Jq2
= 2Tχ(q, 0) (36)

The momentum integral can now be straightforwardly evaluated, leading to a result consistent with our heuristic
scaling.

⟨ϕ2⟩ ≈ Tτ2

Jd2
, ω0τ ≪ 1 and d≪ ξ (37)

Model B: We next consider the case where the Ising order parameter is conserved by the microscopic Hamiltonian
(model B in the Halperin-Hohenberg taxonomy) [18, 22]. An example is the easy-axis XXZ model on a square lattice,
with a Hamiltonian HB that conserves total Sz:

HB = −
∑

⟨ij⟩
J∥S

z
iS

z
j + J⊥(S

x
i S

x
j + Sy

i S
y
j ), with J∥ > J⊥ > 0 (38)

Like model A, we can write down an effective Landau-Ginzburg free-energy functional F for φ(r, t) ∼ Sz
ri(t)/S,

which takes an identical form. Accordingly, the dynamical evolution equation for the Fourier mode (q, ω) of the order
parameter φ is given by:

−iωφ(q, ω) = −JΓ(q)(q2 + ξ−2)φ(q, ω) + Γ(q)h(q, ω) + ζ(q, ω), (39)

However, since φ(q = 0, t) =
∫
drφ(r, t) is conserved, this implies that Γ(q = 0) = Γ0 = 0, in sharp contrast to

model A which has Γ0 ̸= 0. Assuming that the interactions are short-ranged, we expect Γ(q) to be analytic in q
and therefore can write it as Γ(q) = σsq

2 to lowest order in momentum [18, 22]. Therefore, we should replace Γ0 by
Γ(q) = σsq

2 in the expression for χ(q, ω) in Eq. (29), leading to:

χ(q, ω) =

[
− iω

σsq2
+ J(q2 + ξ−2)

]−1

=
χuDsq

2

−iω +Dsq2 + Jσsq4
, (40)

where χu = lim
q→0

lim
ω→0

χ(q, ω) =
ξ2

J
, Ds ≡

σs
χu

=
σs
Jξ2

(41)
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Thus, if we neglect the higher order momentum correction in the denominator in Eq. (40), we recover the diffusive
form of the correlator with diffusion constant Ds = σsχ

−1
u (Einstein relation). Further, Ds goes to zero at the critical

point, indicative of the critical slowing down, and the higher order terms of Γ(q) become important. The dynamic
structure factor therefore can be written as:

S(q, ω) =
2T

ω
Im[χ(q, ω)] =

2Tσsq
2

(σsq2)2(ξ−2 + q2)2 + ω2
(42)

Once again, the general ⟨ϕ2⟩ may be found by numerical integration, and we focus on the asymptotic limits which
are analytically amenable. When d≫ ξ, we can approximate the structure factor as:

S(q, ω) ≈ 2TχuDsq
2

ω2 + (Dsq2)2
(43)

The typical frequency scale in this regime is given by ω0 = Dsd
−2 (using typical q ∼ d−1). In the large time limit,

i.e, ω0τ ≫ 1, the qubit is again sensitive to S(q, ω = 0) = 2Tχu

Dsq2 . In contrast, in the small time limit, i,e, ω0τ ≪ 1,

the qubit can sense the entire spectral weight of the diffusive mode as the filter function width (τ−1) is much larger
than the typical spread ω0 of the structure factor S(q = d−1, ω). The integral over all frequencies corresponds to
measuring the static structure factor S(q) =

∫
dω
2πS(q, ω). These considerations lead to the following expression for

⟨ϕ2⟩ in the diffusive regime.

⟨ϕ2⟩ ≈





[
Tτξ2

d2

]
1

Ds
ω0τ ≫ 1

[
Tτξ2

d2

]
τ

d2
ω0τ ≪ 1

(44)

We note that while the small time limit is identical to model A, the large time limit is different as we are sensitive
to the dynamics (set by ω0) which differ significantly between the two models. Further, both limits are in accordance
with our heuristic formula in Eq. (24).

Close to criticality, the diffusion coefficient vanishes, Ds → 0, and the behavior of spin-correlations is no longer
diffusive. Rather, from Eq. (42), the typical frequency scale is now given by ω0 = σsd

−4 (for typical q ∼ d−1). Once
again in the large τ limit, i.e, ω0τ ≫ 1, the dominant contribution from N (ω) comes at low frequencies. Defining
q̄ = qd, we can capture the leading divergence in N (ω) as follows:

N (ω) =
2T

σsd6

∫ ∞

0

dq̄
q̄5e−2q̄

q̄8 + (ωd4/σs)
2 ≈ T√

σsω
when ω → 0 (45)

This 1/
√
ω divergence in the noise spectral density at low-frequency (which corresponds to a 1/

√
t decay of the

correlations at large time) leads to (with ω̄ = ωτ):

⟨ϕ2⟩ ≈
∫
dω

4 sin2(ωτ/2)

ω2

T√
σsω

=
T√
σs
τ3/2

(∫
dω̄

4 sin2(ω̄/2)

ω̄5/2

)
≈ T√

σs
τ3/2, ω0τ ≫ 1 and d≪ ξ (46)

Note that, once gain, in the short time limit is identical to model A as we are insensitive to dynamics. By reversing
the order of frequency and momentum integration (as we did for model A), we find that:

⟨ϕ2⟩ ≈ Tτ2

d2
, ω0τ ≪ 1 and d≪ ξ (47)

This concludes our discussion of Ramsey sequence, and the above results are summarized in the first two rows of
Table I of the main text.

General scaling functions: The most general scaling for ⟨ϕ2⟩, beyond mean-field approximation, can be written
down by analyzing the scaling behavior of the susceptibility in the vicinity of Tc in terms of a scaling function χsc:

χ(q, ω) = q−2+η χsc

(
ωq−z, qξ

)
(48)
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Leveraging the fluctuation dissipation theorem, we can write down a scaling function Ssc(q, ω) for the dynamic
structure factor:

S(q, ω) =
2T

ω
Im[χ(q, ω)] (49)

=
2T

ω
q−2+ηIm[χsc(ωq

−z, qξ)] (50)

= Tq−2+η−zS̃sc(ωq
−z, qξ) (51)

= Tq−2+η−zSsc(ωξ
z, qξ) (52)

where we have re-defined the scaling form Im[χsc(ωq
−z, qξ)] = ωq−zS̃sc(ωq

−z, qξ) in the penultimate step, and used
ωq−z = (ωξz) × (qξ)−z in the last step to re-write the scaling function using a convenient set of variables. Plugging
this into Eq. (31) and non-dimensionalizing the frequency and momentum integral in terms of ω̄ = ωτ and q̄ = qd
respectively, leads to:

⟨ϕ2⟩ = Tτ

d2+η−z

∫
dω̄

2π

4 sin2(ω̄)

ω̄2

∫
dq̄

2π
q̄3e−2q̄Ssc(ω̄ξ

z/τ, q̄ξ/d) =
Tτ

d2+η−z
F

(
τ

ξz
,
d

ξ

)
(53)

which is exactly Eq. (4) in the main text.

CPMG: In this section, we discuss the signatures of criticality that can be obtained when using more intricate
frequency filter function Wτ (ω) such as the CPMG pulse sequences (see Fig. S1 for a schematic). While the exact
analytic expressions for the filter function can be found in Eq. (8), we will find it more convenient to focus on the
limit of a large number of pulses, derived in Eq. (9). In this limit, the frequency filter function takes the form
of a sum of Dirac-delta functions, with the most prominent peak at ωp = Nπ/τ (see Fig. S2). Therefore, the
characteristic frequency of measurement changes from ω = 0 for Ramsey to ω ≈ ωp for CPMG. The elimination of
the dc component makes the noise profile sensitive to dynamics of sources even in the short measurement-time limit
(typical noise frequency ω0 ≪ ωp), while leaving the opposite limit of large measurement time essentially unchanged.
Using that the noise spectral density takes a Lorentzian form [i.e., N (ω) ∝ ω0

ω2
0+ω2 close to the critical point as

discussed the previous section], we can derive an explicit analytic form for ⟨ϕ2⟩ for CPMG sequences:

⟨ϕ2⟩ ∝ τ

∫
dω

2π

[ ∞∑

n=0

δ [ω − (2n+ 1)ωp]

(2n+ 1)2

]
N (ω) =

τ

2π

∞∑

n=0

N ((2n+ 1)ωp)

(2n+ 1)2
(54)

=
τ

2π

∞∑

n=0

1

(2n+ 1)2

[
ω0

ω2
0 + (2n+ 1)2ω2

p

]
=

πτ

16ω0

[
1− tanh(πω0/2ωp)

πω0/2ωp

]
(55)

Combining asymptotic limits of Eq. (55) with the intuition that the distance scaling of the noise is not affected by
the choice of frequency filter function, we can write down the following asymptotic expressions for the noise:

⟨ϕ2⟩ ≈





τ

ω0d2
×min

(
1,
ξ2

d2

)
ω0 ≫ ωp

τ

ω0d2

(
πω0

2ωp

)2

×min

(
1,
ξ2

d2

)
ω0 ≪ ωp

(56)

Away from criticality, the noise spectrum N (ω) is quite flat at low-frequencies (ω0 ≫ ωp). Therefore, the qubit probe
is essentially sensitive to N (ω ≈ 0) (see Fig. S2a). Thus, in this regime CPMG provides the same information as
Ramsey spectroscopy. As we approach the critical point, ω0 decreases due to critical slowing down, and consequently
⟨ϕ2⟩ increases. This increase continues until ω0 ∼ ωp, where ⟨ϕ2⟩ is maximized (see Fig. S2b). Upon reducing ω0

further, N (ω) becomes sharply peaked and the overlap of N (ω) with the CPMG filter function Wτ (ω) decreases
(see Fig. S2c), resulting in a corresponding decrease of ⟨ϕ2⟩. However, given that typical energy-scales in electronic
systems are much larger than ωp (∼ mK), tuning a system to the regime where ω0 ≪ ωp might be out of reach for
current experimental setups. Therefore, even for CPMG pulse sequences, we generically expect to observe an increase
in ⟨ϕ2⟩ as we tune towards the critical point.

Next, we turn to explicit expressions for ⟨ϕ2⟩ in asymptotic regimes for thermal transitions. To start, we focus on
the limit of ω0 ≪ ωp. In this regime, ⟨ϕ2⟩ is sensitive to the tail of the noise spectral density N (ω), which contains
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FIG. S2. Schematic depiction of the noise spectral density N (ω) and the filter function Wτ (ω) as we approach the critical
point, indicating that the maximum overlap happens close to, but not exactly at the critical point (when d is large).

information about critical dynamics (see Fig. S2c). Therefore, we can use CPMG spectroscopy in this regime to
distinguish between models in different dynamic universality classes. Taking up our previous examples, we find that
for model A (Ising model with no conservation law):

⟨ϕ2⟩ ≈ TτΓ0

ω2
pd

4
(57)

For model B (Ising transition with a conserved order parameter), the dependence of ⟨ϕ2⟩ on qubit-sample distance d
is distinct:

⟨ϕ2⟩ ≈ Tτσs
ω2
pd

2
(58)

As alluded before, in the opposite limit (ω0 ≫ ωp), the scaling of ⟨ϕ2⟩ for CPMG pulse sequences is identical to
Ramsey spectroscopy.

NOISE AT QUANTUM PHASE TRANSITIONS

In this section, we expand on the discussion of decoherence signatures of quantum phase transitions, and provide
derivations of the scaling of ⟨ϕ2⟩ for some representative examples. As discussed in the main text, dynamics at
quantum phase transitions can be studied using deterministic evolution by the quantum Hamiltonian itself, without
resorting to a stochastic description. Specifying to insulators with spin-degrees of freedom, we derive ⟨ϕ2⟩ for the
Ramsey sequence using the low-energy dynamics in the vicinity of a quantum critical point for two illustrative tran-
sitions (both in two spatial dimensions): (i) Néel to quantum paramagnet (valence bond solid) transition driven by
geometric frustration, and (ii) Field-driven ferromagnet to paramagnet transition in a transverse field Ising model
(TFIM). While the former was discussed in the main text, the latter is important as an example of a transition without
any conservation law and therefore serves as an analogue to the anisotropic Ising transition (model A) discussed in
the context of classical/thermal phase transitions.

Néel-paramagnet transition: We consider a Heisenberg Hamiltonian on a square lattice:

H =
∑

i ̸=j

JijSi · Sj , with short-ranged Jij > 0. (59)

In presence of only nearest neighbor exchange, the ground state of H is well-known to be a Néel antiferromagnet.
As we tune the couplings Jij to increase frustration, quantum fluctuations drive a transition to paramagnetic phase.
The low-energy properties of this transition is captured by the O(3) non-linear sigma model, and has been discussed
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extensively in the literature [7, 23–27]; here we follow Ref. 7. The O(3) non-linear sigma model for the order parameter
field n(ri) ∼ (−1)ix+iySri/S is described by the action:

S =

∫
dt

∫
drL(r, t), L = (∂tn)

2 − c2(∇n)2 with n2 = 1 (60)

The length constraint introduces non-linearity in the otherwise linear action. In order to formulate the quantum
Hamiltonian for the effective theory, it is helpful to introduce the conjugate angular momentum L which generates
rotations of n i.e, [Lα, nβ ] = iεαβγnγ ; the fluctuations of L can be interpreted as the ‘ferromagnetic’ fluctuations. A
lattice-regularized Hamiltonian is therefore given by:

H =
Jλ

2

∑

i

L2
i − J

∑

⟨ij⟩
ni · nj −H ·

∑

i

Li (61)

where we have introduced an external fieldH which couples to the net conserved angular momentum Ltot ≡
∑

i Li. For
H = 0, this Hamiltonian has an ordered antiferromagnetic phase for small λ with ⟨n⟩ ≠ 0, and a quantum-disordered
phase at large λ with ⟨n⟩ = 0.

Since the typical sample-probe distance d ≫ a (lattice spacing), it follows that qubit probe is not sensitive to
short-wavelength spin-fluctuations at the scale of the lattice spacing (the momentum filter function Wd(q) is expo-
nentially small for q ∼ a−1). Therefore, the qubit probe cannot directly access the order parameter fluctuations
⟨nµ(r, t)nν(0, 0)⟩. Rather, we detect the slowly varying correlations of the uniform spin-density, which corresponds to
Cµν(r, t) ≡ ⟨Lµ(r, t)Lν(0, 0)⟩. It is more convenient to study the dynamic susceptibility χµν(q, ω), defined as follows
[7]):

χµν(q, ω) ≡ i

∫ ∞

0

dt

∫
drCµν(r, t)e

i(ωt−q·r) (62)

At small q and ω, at any finite temperature there is unbroken spin-rotation invariance (no order). Since L(r, t) is a
conserved density, at long times the susceptibility takes a diffusive form:

χµν(q, ω) = δµνχ(q, ω), with χ(q, ω) =
χuDsq

2

−iω +Dsq2
(63)

Of course, this hydrodynamic form requires that the typical ω satisfies ωtc ≪ 1, where tc is the microscopic collision
time: this approximation is well-justified because the typical time-scale τ in the frequency filter function Wτ (ω) is
much longer than tc. We use the fluctuation-dissipation theorem to extract the dynamic spin structure factor from
the susceptibility [6, 7]. This leads to the following form for ⟨ϕ2⟩ in Ramsey:

⟨ϕ2⟩ ≈





[
Tτχu

d2

]
τ

d2
ω0τ ≪ 1

[
Tτχu

d2

]
1

Ds
ω0τ ≫ 1

(64)

where ω0 ∼ Ds/d
2 is assumed to satisfy ω0tc ≪ 1. The spin-diffusion coefficient Ds and the uniform static suscepti-

bility χu can both be written down in terms of scaling functions of δ/T , where δ refers to an intrinsic energy scale in
the system, which is set by stiffness ρs for λ < λc (ordered side) and single particle gap ∆ for λ > λc (paramagnetic
side). The behavior of these scaling functions therefore dictate ⟨ϕ2⟩, which are strongly constrained by symmetry
considerations; we turn to these next.

First, we consider the uniform static susceptibility χu, which can be written as the second derivative of the free
energy density f [H] = −(T/V ) ln[Z[H]] with respect to the external field, i.e,

f [H] = f [H = 0]− 1

2
χu,αβHαHβ + ... (65)

Since the free energy density has dimensions d + z in d-dimensional space, and H causes n to Larmor precess
(∂τn → ∂τn− iH×n) and therefore has fixed dimension −z, so we have [χu] = d− z. Therefore, the scaling form for
χu is (we now restrict to d = 2):

χu =
T

c2
Φu,±

(
δ

T

)
(66)
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where we have used [T ] = z, [c] = z − 1, Φu,± are dimensionless scaling functions, and δ = ρs for λ < λc (ordered
side) and δ = ∆ for λ > λc (paramagnetic side). Similarly, because diffusion involves transport of a conserved density,
the diffusion constant Ds does not pick up an anomalous dimension, i.e, [Ds] = z − 2. Therefore, as a function of
temperature T and energy-scale δ, Ds has a scaling form given by:

Ds =

(
c2

T

)
ΦDs,±

(
δ

T

)
(67)

Combining this information, we have the following scaling form for the noise (setting z = 1, the case for general z is
quoted in Table I of the main text):

⟨ϕ2⟩ ≈





[
T 2τ

c2d2
Φu,±

(
δ

T

)]
τ

d2
ω0τ ≪ 1

[
T 2τ

c2d2
Φu,±

(
δ

T

)]
T

c2 ΦDs,± (δ/T )
ω0τ ≫ 1

(68)

Now let us discuss the different universal regimes where the functions Φu and ΦDs are known functions of the ratio
δ/T . First, let us consider the antiferromagnetic regime λ < λc and low T, i.e, T ≪ δ = ρs. In this regime, the
correlation length ξ ∼ c

T e
2πρs/T is exponentially large at low T [23–25]. This implies that up to momenta of order

q ≈ ξ−1, bosonic spin-wave excitations have very high occupancy:

nB(q ≈ ξ−1) = (eβcξ
−1 − 1)−1 ≈ ξ/(βc) = e2πρs/T ≫ 1 (69)

Therefore, in this regime we can describe the system using quasi-classical thermal spin waves. If qξ ≳ 1, the spin-
waves are slowly damped, and therefore the behavior is analogous to a classical Heisenberg antiferromagnet with
renormalized parameters. Therefore, for d ≲ ξ the system appears ordered and the spin-spin correlations are governed
by weakly damped spin-waves. In contrast, if d ≳ ξ, i.e, we are probing the lowest momentum scales (qξ ≲ 1), then the
spin-waves get heavily damped. Therefore, for a large qubit-probe distance d, we instead measure diffusive behavior
in the correlation function, as discussed in Eq. (64). The values of χu and Ds are given by (for T ≪ ρs) [7]:

χu =
T

c2

[
2ρs
3T

+
1

3π
+O

(
T

ρs

)]
, and Ds ≈

c2

T

(√
T

ρs
e2πρs/T

)
(70)

Since the diffusion constant diverges as T → 0 and the uniform susceptibility χu remains finite, ⟨ϕ2⟩ goes to zero
exponentially in ρs/T = δ/T in the ordered phase. This can be explicitly seen by plugging these expressions for χu

and Ds into Eq. (64):

⟨ϕ2⟩ ≈ τT 3

d2c4

(ρs
T

)3/2
e−2πρs/T (71)

which is presented in the last row of Table I in the main text. We emphasize that observing diffusive behavior of
spin-correlations requires that the sample-probe distance d to be much larger than the correlation length ξ, which
may not hold for very low temperatures.

Next, we discuss the quantum critical region where temperature is much larger than the stiffness or gap scale
(T ≫ δ). This is the so-called incoherent regime, where the only relevant energy scale is T . In this case, both the
susceptibility and diffusion constant are set purely by the temperature [7]:

χu =

√
5

π
ln

(√
5 + 1

2

)
T

c2
, and Ds ≈ 0.3/χu ∼ c2

T
(72)

Note that as T approaches ρs in Eq. (70), there is a crossover from the low-T large stiffness regime to the critical
regime in both χu and Ds. In this regime, using Eq. (64), we find the following expression for scaling of the noise in
the long time (ω0τ ≫ 1) limit:

⟨ϕ2⟩ ≈ τT 3

d2c4
(73)
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which is quoted in Table I of the main text. In the short time limit (ω0τ ≪ 1), we note using Eq. (64) the noise will
scale as T 2 as it is insensitive to the diffusive dynamics. Importantly, these temperature scaling behaviors will hold
right down to T = 0 if we remain exactly at the critical point λ = λc.

Finally, we discuss the behavior of χu and Ds in the low T paramagnetic regime (λ > λc). The ground state
is the product state

∏
i |ℓ = 0,mℓ = 0⟩i with zero net angular momentum, and the excitations at low temperature

are a dilute gas of gapped bosonic ‘spin-flips’ (ℓ = 1,mℓ = 0,±1). Because spin-flips have a gap ∆, the uniform
susceptibility χu is exponentially suppressed at low T . However, the spin diffusion constant Ds is still large. This
can be understood using the Einstein relation Ds = σsχ

−1
u . The density of thermally excited quasiparticles are

exponentially small, but their scattering time is also exponentially large, resulting in a finite spin-conductivity σs at
low T (with at most a power law divergence in T ). Further, χ−1

u diverges at low T since the uniform susceptibility
χu goes to zero at low temperatures. Therefore, we expect Ds = σsχ

−1
u to also diverge at low T, and thus the noise

in this regime is uniformly exponentially suppressed. For completeness, we provide the expressions for Ds and χu in
this regime [7]:

χu =
∆

πc2
e−∆/T , and Ds ∼

ln(∆/T )2

χu
=
πc2 ln(∆/T )2e∆/T

∆
(74)

Therefore, we see that in the long-time limit, ⟨ϕ2⟩ ∼ χu/Ds goes to zero as e−2∆/T in the quantum paramagnet at
low temperatures as a clear consequence of the spectral gap, as quoted in Table I in the main text.

Field-driven ferromagnet-paramagnet transition: Next, we provide details for the scaling of ⟨ϕ2⟩ for the transverse
field Ising model (TFIM) on a square lattice. This differs in two important aspects from the Heisenberg model
discussed earlier: (i) The broken symmetry is discrete and there is a spectral gap (above the ground state) on both
sides of the critical point, and (ii) The qubit is directly sensitive to the order parameter φ ∼ Sz, which is not conserved
and therefore displays anomalous scaling. This leads to important differences in the scaling of ⟨ϕ2⟩, as we show below.

We start by noting the Hamiltonian for the TFIM, with a dimensionless parameter λ controlling the strength of
the applied transverse field:

H = J
∑

⟨ij⟩
Sz
iS

z
j + Jλ

∑

i

Sx (75)

While the TFIM is exactly solvable by fermionization in one spatial dimension, and the correlation functions and
crossover behavior can be exactly computed [7]; on a square lattice this is no longer the case. However, we can still
appeal to the low-energy field theory to extract detailed information about dynamics near the phase transition for
the two-dimensional case.

S =

∫
dt

∫
drL(r, t), with L = (∂tφ)

2 − c2(∇φ)2 − [rφ2 + Uφ4] (76)

Interactions renormalize the value of r to λ − λc, which vanishes at the critical point λ = λc. As alluded to earlier,
the symmetry broken (φ → −φ) is discrete, which means that there exists a gap on both sides of the critical point.
Therefore, the noise at low T will be exponentially suppressed on both sides of the critical point, but will be large in
the quantum critical region. Generally, the spectral gap ∆ will scale away from the critical point as:

∆± ∝ |λ− λc|νz (77)

where we used ∆± to indicate that the gaps on the two sides of the transition are different. Secondly, there is no
conservation law in the Ising Hamiltonian, which means that spin-correlation functions no longer take a diffusive form,
and φ can pick up an anomalous dimension η. The probe measures spin correlations and is therefore sensitive to this
anomalous dimension. Knowing that χ(q, ω → 0) → q−2+η, we can write down a scaling form for the susceptibility
using the dynamical critical exponent z, in terms of dimensionless variables cq/T 1/z, ω/T and ∆±/T :

χ(q, ω) =
1

T (2−η)/z
Φ±

(
cq

T 1/z
,
ω

T
,
∆±
T

)
(78)

Plugging this into Eq. (31), just as we did for the classical Ising model, leads to the following scaling form for the
⟨ϕ2⟩, in terms of universal scaling functions Ψ± (or Ψ̃±):

⟨ϕ2⟩ = τ

T (2−η)/zd4
Ψ±

(
Tτ,

T 1/zd

c
,
∆±
T

)
= T (2+η−z)/zΨ̃±

(
Tτ,

T 1/zd

c
,
∆±
T

)
(79)
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For the Ising transition in two spatial dimensions, analytic scaling functions at finite temperature are not available in
the literature to the best of our knowledge. However, we can appeal to the spectral gap on both sides of the transition
to argue that ⟨ϕ2⟩ is exponentially suppressed in ∆±/T in the low temperature regime. In contrast, in the quantum
critical regime where temperature is only relevant energy scale, we can use the following phenomenological form:

χ(q, ω) =
χ(0, 0)

1− iω/Γ + q2ξ2
, where χ(0, 0) ∼ T (−2+η)/z, Γ ∼ T and ξ ∼ c

T 1/z
(80)

This is be motivated by noting that at λ = λc, the static uniform susceptibility limq→0 χ(q, 0) only diverges at T = 0,
but remains finite at non-zero T. Since χ(q, 0) ∼ q−2+η at T = 0 and must obey a scaling relation of the form
χ(q, 0) = q−2+ηχsc(qT

1/z) at finite temperature, this implies that we can write χ(0, 0) ∼ T (−η+2)/z. Further, noting
that we expect a finite relaxation rate Γ for the order-parameter mode φ(q, t) towards equilibrium even at q = 0
(as the Ising order parameter is not-conserved), and that finite q corrections are expected to be analytic at non-zero
T when λ ≈ λc; we postulate the form presented in Eq. (80). Lastly, since the only energy-scale in the quantum
critical regime is T , we must have Γ ∼ T , and ξ ∼ c/T 1/z (which corresponds to a smaller correlation length at
larger T due to thermal fluctuations). A similar form is found to be an excellent approximation to the exact solution
for low-frequency dynamics of the one-dimensional TFIM [7, 28]; our arguments show that this should be true for
the TFIM in two spatial dimensions as well. Plugging the phenomenological functional form of the susceptibility in
Eq. (80) into Eq. (31), we finally obtain the scaling of ⟨ϕ2⟩ in the experimentally relevant limit of low temperatures:

⟨ϕ2⟩ ≈ 2Tχ(0, 0)

Γ

∫
dω

2π
Wτ (ω)

∫
dq

q3e−2qd

(1 + q2ξ2)2 + (ω/Γ)2
≈ 2Tχ(0, 0)

Γ

(∫
dω

2π
Wτ (ω)

)

︸ ︷︷ ︸
τ

∫
dq

q3e−2qd

(1 + q2ξ2)2

≈ τ

(
T (−2+η)/z

ξ4

)
ln

(
ξ

d

)
= τ

(
T (2+η)/z

c4

)
ln
( c

dT 1/z

)
, when ω0τ ∼ Γτ ∼ Tτ ≫ 1 and d≪ ξ (81)

Eq. (81) completes the derivation of the noise at criticality for the quantum paramagnet to ferromagnet transition,
quoted in Table I in the main text.

NUMERICAL ESTIMATES OF DECOHERENCE RATE

In this section, we provide additional details for the quoted decoherence rate of a probe spin localized nearby a
monolayer CrI3 sample. In CrI3, the active degrees of freedom are S = 3/2 spins that are arranged on a hexagonal
lattice [29]. Few-layered CrI3 exhibits unusual magnetic phenomena at low temperatures, with magnetic ordering
that depends on the number of layers [29, 30]. Here, we focus on monolayer CrI3, which undergoes a ferro-magnetic
transition at Tc = 45 K [31, 32]. This thermal phase transition is an Ising transition with order parameter Sz, and
the spin-interaction Hamiltonian for CrI3 conserves Sz [33]. Thus, symmetries ensure that the Ising order parameter
is conserved, and its diffusive dynamics near the thermal transition should be described by Model B, as discussed
previously.

To obtain a tentative lower-bound on the decoherence rate, we consider temperatures higher than Tc; approaching
the critical point by lowering T will further increase the decoherence rate. This allows us to focus on the diffusive regime
with relatively short spin-correlation lengths, such that the relevant parameters can be estimated more accurately from
existing literature. Further, as we will show explicitly below, in this regime the typical frequency scale ω0 ∼ Ds/d

2

is in the THz regime for typical qubit-sample distance d ∼ 10 nm, applicable to NV centers probe spins in diamond.
Thus, the frequency-width of the noise spectrum N (ω) is much broader than the range of frequencies over which the
qubit probe is sensitive, i.e. whereWτ (ω) is appreciably large, (see Fig. S2). Consequently, we can approximate N (ω)
by N (ω = 0), simplifying our analysis:

⟨ϕ2⟩ =
∫
dω

2π
Wτ (ω)N (ω) ≈ N (0)

∫
dω

2π
Wτ (ω) =

( γ
2ℏ

)2
τN (0) (82)

where we have used that the total integrated weight does not depend on the specific frequency filter function. Given
the insensitivity to the precise frequency range considered, this enables us to directly make an estimation of spin-echo
T echo
2 time scale. This is particularly useful, because, in experiments, one often prefers to work with spin echo pulse

sequences as they efficiently cancel out external low frequency noise (such as shot-by-shot fluctuations), and enable
longer coherence times for the probe spin. Given the linear growth of the the decoherence phase (Eq. 82), the measured
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coherence profiles follows a simple exponential decay and thus the decoherence rate immediately informs us of the
spin echo coherence time T echo

2 : 2⟨ϕ2⟩|τ=T echo
2

= 1. Restoring all previously suppressed factors of ℏ and kB , we find:

1

T echo
2

= 2
( γ
2ℏ

)2
N (0) = 2

( γ
2ℏ

)2(gsµBµ0S

2a2

)2 ∫ ∞

0

dq q3e−2qd

(
2kBTχu

Dsq2

)

= 2
( γ
2ℏ

)2 (gsµBµ0S)
2

16πa4d2

(
χukBT

Ds

)
(83)

We can estimate the uniform susceptibility as χu = limω→0 limq→0 χ(q, ω) = ξ2/J . Further, we assume that the
temperature-dependence of the spin-diffusion constant Ds appears only via the correlation length ξ. Such an assump-
tion is always true in the scaling limit where ξ ∼ (Tc − T )−ν , with ν = 1/2 in mean-field theory. Within mean-field
theory, we can estimate Ds ∼ a4J/ξ2ℏ; note that ξ ≈ a gives the expected high temperature limit (Tc ≪ T ≲ J) of
Ds with a mean-free path ∼ a and an intrinsic interaction-induced scattering time ∼ ℏ/J . Using the aforementioned
scaling assumption, we find that:

1

T echo
2

= 2
( γ
2ℏ

)2 (gsµBµ0S)
2

16πa4d2

(
ℏkBTξ4

J2a4

)
(84)

For CrI3, we have a dominant interaction-scale J = 2.2 meV and in-plane lattice spacing a = 0.687 nm, while
for NV qubits, γ = gσµB with the NV g-factor gσ = 2 [34–42]. Consider a temperature T = 60 K, so that the
system is sufficiently away from the critical point such that ξ ≈ 2a (heuristically ξ is of the lattice scale). Then, for
a sample-probe distance d = 10 nm, we find that T echo

2 ≈ 5 µs, as quoted in the main text. Note that our estimate
here if fairly conservative, approaching Tc to increase ξ will enhance the noise several-fold.

BEYOND THE GAUSSIAN NOISE APPROXIMATION

In this section, we elaborate on the consequences of non-Gaussian noise, and provide a derivation of the scaling of
non-Gaussian noise near the transition in terms of higher order correlation functions of the critical classical or quantum
field φ(r, t). To this end, we start by noting that in the most general case (going beyond the Gaussian approximation),
the qubit coherence as a function of time is given by ⟨σ+(t)⟩ = ⟨σ+(0)⟩e−α(t)+iθ(t). The decay parameter α(t) and
the phase rotation θ(t) are given by [43]:

α(t) =
∞∑

ℓ=1

(−1)ℓ

(2ℓ)!
Υ(2ℓ)(t), and θ(t) =

∞∑

ℓ=1

(−1)ℓ

(2ℓ+ 1)!
Υ(2ℓ+1)(t)

Υ(k)(t) ≡
∫ τ

0

dt1

∫ τ

0

dt2...

∫ τ

0

dtk C
(k)(t1, t2, ..., tk) (85)

In Eq. (85), the kth order cumulant C(k)(t1, t2, ..., tk) is determined by the source field correlations ⟨B(t1)B(t2)....B(tj)⟩
with j ≤ k. Focusing on noise generated by fluctuating magnetic fields, the relevant sources correspond to spin
or current in the sample of interest. Therefore, the kth order cumulant can be written as the convolution of the
connected correlation functions in the sample and the appropriate kernel (obtained by solving Maxwell’s equations)
that propagate the field from the source to the qubit location (as described above when deriving the momentum filter
function). For insulators with spin-degrees of freedom, this kernel decays as ∼ qe−qd [see Eq. (15)], and the relevant
correlation function is the connected k-point correlator ⟨φ(q1, t1)...φ(qk, tk)⟩ [44]. Indeed, the k = 2 case corresponds
to the Gaussian noise discussed before; we now consider extensions to general k.

To start, we note the cumulants or connected correlation functions with an odd number of fields determined the
phase evolution of the decoherence, while the cumulants with an even number of fields determine its amplitude. For
a ferromagnetic transition, this implies that the odd correlators are zero on the disordered side (where the φ → −φ
symmetry is preserved), while they become non-zero on the ordered side as the symmetry spontaneously breaks (this
can also be seen, for example, by expanding the field operator about the non-zero minima in the φ4-theory, where odd
terms appear beyond the quadratic approximation). Therefore, we expect the probe to pick up an additional phase
once the symmetry is spontaneously broken; this can serve as a simple diagnostic of the sample’s phase of matter.

We can also find the contribution of the higher order cumulants to the noise using scaling arguments. Let us consider
the kth order term (with k even), and study its contribution, α(k)(t), to the decay dynamics, α(t) =

∑∞
k=1 α

(2k)(t).
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We note that, for a Ramsey sequence, this contribution can be written as:

α(k)(t) ∼
k∏

i=1

∫ τ

0

dti

〈
k∏

i=1

B(ti)

〉
∼

k∏

i=1

∫
dωifp(ωi)

k∏

i=1

∫
d2qi qie

−qid

〈
k∏

i=1

φ(qi, ωi)

〉
(86)

where in the second line, fp(ωi) =
∫ τ

0
dt eiωit determines to the frequency filter function. More complicated control

pulse sequences, denoted schematically by yp(t), can be taken into account by using fp(ωj) ≡
∫ τ

0
dt eiωjtyp(t), as

discussed in Ref. 43 and in analogy to our discussion about regarding the frequency filter function. Since these do not
make a difference to our scaling arguments, we restrict to a Ramsey sequence [yp(t) = 1] for the following discussion.

Let us first consider the case of a quantum critical point which is both Lorentz invariant (z = 1) and conformally
invariant in D = 2 + 1 dimensions. In this case, conformal invariance dictates the following scaling relation for the
multipoint correlation function of the order parameter field at T = 0:

〈
k∏

i=1

φ(gri, gti)

〉
= g−k∆̄

〈
k∏

i=1

φ(ri, ti)

〉
(87)

where g denotes a re-scaling of spacetime, and ∆̄ = (D− 2+ η)/2 is the scaling dimension of the field φ(ri, ti) [7] (we
use ∆̄ for the scaling dimension to distinguish from the spectral gap ∆). Accordingly, in momentum space, we can
write the the following scaling relation:

〈
k∏

i=1

φ(gqi, gωi)

〉
= gk(∆̄−D)

〈
k∏

i=1

φ(qi, ωi)

〉
(88)

Rescaling the correlator with g = 1/q1 enables us to write Eq. (88) as follows:
〈

k∏

i=1

φ(qi, ωi)

〉
= q

k(∆̄−D)
1

〈
k∏

i=1

φ

(
qi

q1
,
ωi

q1

)〉
(89)

= q
k(∆̄−D)+D
1 δ(D−1)

(
k∑

i=1

qi

)
δ

(
k∑

i=1

ωi

) [〈
k∏

i=1

φ

(
qi

q1
,
ωi

q1

)〉]
(90)

where we used spatial- and time-translation invariance to simplify the correlation function such that it depends only on
k− 1 momenta and frequency coordinates, qk = −∑k−1

i=1 qi with ωk = −∑k−1
i=1 ωi. Since, in Eq. (90), the correlations

inside square brackets only depend on dimensionless ratios, the dimensionful content of the multi-point correlator is
simply set by the prefactors.

Putting everything together, we can write the scaling form for the contribution to the noise α(k)(t) due to k-point
correlations at a Lorentz invariant quantum critical point (z = 1, λ = λc, T = 0):

α(k)(t) ∼ τ

[
k∏

i=1

∫
d(D−1)qi [qie

−qid]

]
q
k(∆̄−D)+D
1 δ(D−1)

(
k∑

i=1

qi

)
× ψ̃sc

({
qi
q1

}
,

1

τq1

)

= τ × 1

d(k−1)(D−1)
× 1

dk
× 1

dk(∆̄−D)+D
× ψsc

(τ
d

)

=
τ

d1+k∆̄
ψsc

(τ
d

)
D=2+1−−−−−→ τ

d1+k(1+η)/2
ψsc

(τ
d

)
(91)

where the delta function on the sum of frequencies contributes a factor of τ due to the frequency integrals, ψ̃sc and
ψsc are dimensionless scaling functions, and we have used the fact that we are working in two spatial dimensions.

So far we have studied a very particular case, namely a quantum critical point with Lorentz and conformal invariance.
However, deviations away from this point will modify the scaling form above. For example: (i) the critical point may
not have Lorentz invariance (i.e., z ̸= 1); (ii) the sample may not be at the critical point (i.e., λ ̸= λc, and thus the
spectral gap ∆ ̸= 0); and (iii), the temperature will not be zero (i.e., experiments always work at small but non-zero
temperatures T > 0). Nevertheless, near a quantum critical point, we expect the multi-point correlation function to
be described by a scaling form that is governed by the quantum critical point. Therefore, we generalize the scaling
form [Eq. (90)] by taking D = 2+1 → 2+ z, such that ∆̄ = (2+ z− 2+ η)/2 = (z+ η)/2, and introducing additional
scaling parameters ωi/T and ∆/T :

〈
k∏

i=1

φ(qi, ωi)

〉
= q

k(∆̄−2−z)+(2+z)
1 δ(2)

(
k∑

i=1

qi

)
δ

(
k∑

i=1

ωi

)
Ψ̃sc

({ cqi
T 1/z

}
,
{ωi

T

}
,
∆

T

)
(92)



17

where Ψ̃sc is a dimensionless scaling function. Accordingly, the scaling form for the contribution to noise α(k)(t) due
to k-point correlations is given by:

⟨ϕ2⟩k ∼ T k(2+η−z)/(2z)Ψsc

(
τT,

dT 1/z

c
,
∆

T

)
(93)

We can check that setting k = 2 leads us to the familiar expression for Gaussian noise previously derived in Eq. (79),
while the relativistic conformal limit (z = 1, T = 0,∆ = 0) reproduces Eq. (92). Note that away from criticality in
presence of a spectral gap ∆ or a correlation length ξ ∼ 1/∆ (for z = 1 theories), short-range correlations imply that
there is a scaling factor (ξ/d)3k−2 which heavily suppresses non-Gaussian (k ≥ 4) contributions to decay of coherence
at large d. This is easier to intuit in real space, where each dipolar contribution gives a factor of d−3, and spatial
translation invariance gives d2, leading to an overall scaling of noise as d−3k+2. However, this is not necessarily true
as we approach criticality (i.e., ∆ → 0 or ξ → ∞ diverges). Nevertheless, in realistic systems, presence of domains
restrict the divergence of ξ. Furthermore, we still expect the higher order contributions to noise to be suppressed by
a power-law of T as low temperatures even when λ = λc, simply because there is low density of fluctuations at such
low temperatures. Taken together, these suggest that the Gaussian approximation can provide a good description
of decoherence in the vicinity of criticality, provided the sample-probe distance d is not very small. Finally, we note
that dynamical decoupling protocols that use suitably designed dynamically decoupling pulse sequences can extract
non-Gaussian contributions, as has been shown both theoretically [43, 45] and experimentally for superconducting
qubits [3].

DIFFERENTIATING BULK AND SURFACE CRITICAL PHENOMENA

Throughout the main text, we have assumed that the sample of interest undergoes a single phase transition as
we tune the experimental parameters. However, for thick material samples, the surface and bulk degrees of freedom
can exhibit widely different behaviors; most notably, exhibiting distinct critical phenomena [46–48]. Crucially, both
critical phenomena will induce different critical fluctuations, affecting the qubit’s decoherence dynamics differently.
Understanding how each type of fluctuation affects the qubit’s dynamics is highly dependent on the details of the
material and the nature of the two critical behaviors. However, some important considerations can be made.

Most importantly, one must note that the sample-probe distance determines the relative contributions of surface
and bulk fluctuations to the qubit’s decoherence; thus, it offers a controllable parameter capable of isolating and
characterizing each critical phenomena separately. Indeed, although in the main text we have focused on the role
of d in selecting a particular momentum along the surface direction, the evanescent nature of the momentum filter
function (e−2qd in Eq. 20), also determines the depth of the fluctuations that the spin-probe qubit couples to.

To highlight this piece of physics, it is important to consider the two relevant lengthscales in the problem: the
width of the surface layer W and the sample-probe distance d. When d ≲ W , the probe-spin qubit can only couple
to the degrees of freedom at the surface since the fluctuations are dominated by signatures of the surface criticality.
We note that this highlights the flexibility of our proposal for directly studying surface criticality by placing the qubit
probe very close to the material sample. When d ≫ W , the spin-qubit probe becomes sensitive to a volume of the
sample that (mostly) includes bulk degrees of freedom. As a result, most of the local fluctuating fields (and thus the
decoherence dynamics) are expected to arise from the bulk fluctuations and thus one should be able to characterize
that particular criticality.

While these considerations provide a qualitative understanding of the regimes under which we expect to be sensitive
to the bulk or the surface criticality, other effects need to be taken into account for a full description of the decoherence
dynamics. Indeed, if one aims to quantitatively extract the criticality of the bulk (or the surface) from the decoherence
signal, one must first generalize our formalism to include the effect of correlations of the fluctuations along the direction
normal to the sample’s surface. Subsequently, the presented scaling analysis must be modified to account for the two
nearby critical phenomena, incorporating the coupling strength between the spin-probe and the fluctuating degrees
of freedom, as well as the nature and position of the different critical points. We leave this detailed analysis for future
work.

Finally, let us note that there are settings where we expect the surface criticality to not play a role in the decoherence
signal. For example, surface sensitive probes such as scanning tunneling microscopy (STM) and angle resolved
photoemission spectroscopy (ARPES) have long been used to study the bulk properties of materials [49, 50], suggesting
that a judicious choice of materials and their preparation can enable a direct investigation into the materials properties.
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Imaging stress and magnetism at high pressures using a nanoscale quantum sensor, Science 366, 1349 (2019).
[49] C. J. Chen, Introduction to Scanning Tunneling Microscopy Third Edition, third edition, new to this edition:, third edition,

new to this edition: ed., Monographs on the Physics and Chemistry of Materials (Oxford University Press, Oxford, New
York, 2021).

[50] J. A. Sobota, Y. He, and Z.-X. Shen, Angle-resolved photoemission studies of quantum materials, Reviews of Modern
Physics 93, 025006 (2021).


