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Scalable spin squeezing in a dipolar Rydberg 
atom array

Guillaume Bornet1,7, Gabriel Emperauger1,7, Cheng Chen1,7 ✉, Bingtian Ye2,7, Maxwell Block2,7, 
Marcus Bintz2, Jamie A. Boyd1, Daniel Barredo1,3, Tommaso Comparin4, Fabio Mezzacapo4, 
Tommaso Roscilde4, Thierry Lahaye1, Norman Y. Yao2,5,6 & Antoine Browaeys1

The standard quantum limit bounds the precision of measurements that can be 
achieved by ensembles of uncorrelated particles. Fundamentally, this limit arises 
from the non-commuting nature of quantum mechanics, leading to the presence  
of fluctuations often referred to as quantum projection noise. Quantum metrology 
relies on the use of non-classical states of many-body systems to enhance the 
precision of measurements beyond the standard quantum limit1,2. To do so, one can 
reshape the quantum projection noise—a strategy known as squeezing3,4. In the 
context of many-body spin systems, one typically uses all-to-all interactions (for 
example, the one-axis twisting model4) between the constituents to generate the 
structured entanglement characteristic of spin squeezing5. Here we explore the 
prediction, motivated by recent theoretical work6–10, that short-range interactions—
and in particular, the two-dimensional dipolar XY model—can also enable the 
realization of scalable spin squeezing. Working with a dipolar Rydberg quantum 
simulator of up to N = 100 atoms, we demonstrate that quench dynamics from a 
polarized initial state lead to spin squeezing that improves with increasing system size 
up to a maximum of −3.5 ± 0.3 dB (before correcting for detection errors, or roughly 
−5 ± 0.3 dB after correction). Finally, we present two independent refinements: first, 
using a multistep spin-squeezing protocol allows us to further enhance the squeezing 
by roughly 1 dB, and second, leveraging Floquet engineering to realize Heisenberg 
interactions, we demonstrate the ability to extend the lifetime of the squeezed state 
by freezing its dynamics.

The past decade has witnessed the use of squeezed states of light and 
spin ensembles to improve on a multitude of applications, ranging 
from gravitational wave detectors11 and atom interferometers12 to opti-
cal atomic clocks13,14. The realization of spin squeezing by means of 
global interactions has been demonstrated using a variety of platforms, 
including atomic vapours coupled to light, trapped ions, ultracold 
gases and cavity quantum electrodynamics2. Whether short-range 
interaction (decaying as a power of the distance larger than the dimen-
sionality) can yield scalable spin squeezing has remained an essential 
open question6,15,16. Recent theoretical advances point to an affirmative 
answer6–10,17, proposing a deep connection between spin squeezing and 
continuous symmetry breaking (CSB)7,9,10,18. This connection to CSB 
order broadens the landscape of systems expected to show scalable 
spin squeezing, and suggests that both power-law interactions and 
nearest-neighbour couplings can lead to sensitivity beyond the stand-
ard quantum limit (SQL)9,10. Of particular relevance is the ferromagnetic, 
dipolar XY model; indeed, this model is naturally realized in several 
quantum simulation platforms ranging from ultracold molecules19–22 
and solid-state spin defects23 to Rydberg atom arrays24,25.

In this work, we demonstrate the generation of spin-squeezed states 
using a square lattice of up to N = 100 Rydberg atoms. Our main results 
are threefold. First, we explore the quench dynamics of an initially 
polarized spin state evolving under the dipolar XY model, using a 
procedure analogous to the one introduced for the case of all-to-all 
interactions4. We show that the resulting state shows spin squeezing 
and characterize the generation of multipartite entanglement as a 
function of time. Moreover, the squeezing improves with increasing 
system size, providing evidence for the existence of scalable spin 
squeezing. Second, we introduce a multistep approach to squeezing, 
where the quench dynamics are interspersed with microwave rota-
tions. We demonstrate that this technique leads to an improvement 
in the amount of spin squeezing and also enables the squeezing to 
persist to longer time scales. Finally, motivated by metrological appli-
cations, we show that it is possible to freeze the squeezing dynamics 
(for example, when accumulating a signal) by performing Floquet 
engineering. In particular, we transform the dipolar XY model into a 
dipolar Heisenberg model26,27, so that the squeezing remains constant  
in time.
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Our experimental setup28 consists of a two-dimensional (2D) square 
array of 87Rb atoms trapped in optical tweezers (Fig. 1a). To implement 
the dipolar XY model29, we rely on resonant dipole–dipole interactions 
between two Rydberg states of opposite parities. In particular, we encode 
an effective spin-1/2 degree of freedom as ∣ ∣ S m↑� = 60 , = +1/2�j1/2  and 

P m↓� = 60 , = −1/2�j3/2∣ ∣ , leading to an interaction Hamiltonian:
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where σi
x y z, ,  are Pauli matrices, rij is the distance between spins i and 

j, J/h = 0.25 MHz is the dipolar interaction strength and a = 15 μm is the 
lattice spacing. A magnetic field perpendicular to the lattice plane 
defines the quantization axis and ensures that the dipolar interactions 
are isotropic.

We begin by investigating the squeezing dynamics generated by HXY. 
The atoms are initially excited from the ground state to the Rydberg 
state ∣↑�, using stimulated Raman adiabatic passage (Methods). Using 
a microwave π/2 pulse tuned to the transition between the spin states, 
we prepare an initial coherent-spin state along the y axis, ∣ ∣ ⋯ψ(0)� = → →� 
(Fig. 1b). Next, we allow the system to evolve under HXY and measure 
the squeezing as a function of time.

As squeezing manifests as a change in the shape of the noise distribu-
tion, one must measure the variance of the collective-spin operator in 
the plane perpendicular to the mean-spin direction; to this end,  
we define J θ J θ J= cos( ) + sin( )θ z x, where J σ= ∑x y z i i

x y z
, ,
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, ,  are collective-
spin operators. We characterize the amount of spin squeezing through 
the parameter3,30,
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which quantifies the metrological gain in a Ramsey interferometry 
experiment. To measure ∣⟨ Jy⟩∣, we simply rotate the state ∣ψ t( )�  back 

to the z axis using a second π/2 pulse around x. To measure JVar( )θ , we 
instead perform a microwave rotation around the y axis, where the 
angle θ is tuned by the duration of the pulse. Finally, we read out the 
state of each atom with a detection efficiency of 97.5% for ∣↑�  and 99% 
for ∣↓�  (Methods). Operationally, each experimental sequence is 
repeated roughly 200 times, and from this series of snapshots, we 
calculate the average and variance of all collective-spin operators. For 
a given interaction time, t, the noise distribution has a specific direction 
of smallest uncertainty, corresponding to the angle θ⋆(t) that minimizes 
the variance of Jθ (Fig. 1b). Beginning with a 6 × 6 array, we measure 

JVar( )θ  as a function of θ for t = 0.3 μs. As shown in Fig. 2a, the variance 
shows a sinusoidal shape that reveals the underlying elliptical distribu-
tion of the spin fluctuations and allows us to determine θ⋆. We then 
investigate the time evolution of both ∣⟨ Jy⟩∣ and ⋆JVar( )θ . As the system 
evolves, the initial coherent-spin state expands into a superposition 
of states (fan of red arrows, Fig. 1b), which causes the mean-spin length, 
∣⟨ Jy⟩∣ (red circles, Fig. 2b), to decay towards zero26,27. At the same time, 
the variance of Jθ (blue circles, Fig. 2b) initially decreases below its t = 0 
value, reaches a minimum and then increases, exceeding its t = 0 value 
at late times9.

Taken together, ∣⟨ Jy⟩∣ and JVar( )θ⋆  allow us to reconstruct the squeez-
ing parameter ξR

2 (or ξ10log ( )10 R
2  when expressed in dB) as a function 

of time. As illustrated in Fig. 2b, the dynamics of the squeezing para
meter are qualitatively similar to those of the variance: ξR

2 initially 
decreases below the SQL, reaches an optimum ξR

2⋆ at time t⋆ and then 
increases, exceeding the SQL at late times. The system remains in a 
squeezed state (that is, ξ < 1R

2 ) for roughly 0.5 μs and shows an optimal 
squeezing parameter of −2.7 ± 0.3 dB. The optimal squeezing is highly 
sensitive to detections errors, and analytically correcting for these 
errors (diamond markers, Fig. 2 and Methods) leads to a minimum 
squeezing parameter of −3.9 ± 0.3 dB. However, even this corrected 
value does not reach the optimum (roughly −6.7 dB) predicted for the 
dipolar XY model. We attribute this to two other types of experimental 
imperfection, which also degrade the squeezing parameter: errors in 
the initial state preparation and imperfections in our microwave pulses. 
In contrast to detection errors, these imperfections directly affect the 
many-body squeezing dynamics (Methods); accounting for these fur-
ther errors leads to significantly better agreement between theory and 
experiment (Fig. 2c).

At a fundamental level, a squeezing parameter ξ < 1R
2  necessarily 

indicates the presence of entanglement in our system31,32. We quantify 
the entanglement depth as a function of time; an entanglement depth 
of k means that the many-body state cannot be written as a statistical 
mixture of states factorized into clusters containing up to (k − 1) par-
ticles: that is, at least one k-particle subsystem is entangled32–34. For a 
particular spin length, ∣⟨ Jy⟩∣, the minimum attainable variance of the 
quantum state gives a lower bound on the entanglement depth32. Fixed 
contours of this bound for different values of k are shown in Fig. 2d: if 
a data point falls below the line labelled by k, the entanglement depth 
is thus at least k + 1. The many-body dynamics of our system leads to a 
state whose entanglement depth increases rapidly at early times. Near 
the optimal squeezing time, t⋆, the entanglement depth reaches a 
maximum of k = 3 (for the measurement-corrected data, we find k = 5) 
for our 36-atom system.

One of the distinguishing features of spin squeezing in all-to-all 
interacting models is that it is scalable—the optimal squeezing param-
eter, ξR

2⋆, scales non-trivially with system size as N−ν with ν = 2/3 (ref. 4). 
Whether this is the case for power-law interacting systems is signifi-
cantly more subtle. A heuristic way to understand the emergence of 
early time squeezing dynamics in the dipolar XY model consists  
of rewriting the interaction as: σσ σσσ σ σ σ r σ σ r( + )/ = ( ⋅ − )/i
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2 , at short times15,35. However, this description breaks 
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Fig. 1 | Generation of spin-squeezed states in a dipolar Rydberg atom  
array. a, Fluorescence image of a fully assembled 10 × 10 87Rb array. b, Spin 
fluctuations represented through the Husimi Q distributions (coloured area)2 
of the initial coherent-spin state → →�∣ ⋯  (left panel) and of a squeezed state 
obtained during the dynamics (right panel), depicted on a generalized Bloch 
sphere. The angle θ⋆(t) corresponds to the direction of the narrowest noise 
distribution. The squeezed state is schematically depicted by a superposition 
of coherent states (red arrows). c, The sequence of microwave pulses 
corresponding to the spin-squeezing protocol. A first π/2 pulse initializes all 
the spins along y .̂ By tuning the duration and phase of a second (analysis) 
microwave pulse before readout, one can rotate the spin distribution around ̂y  
to measure the variance Var( Jθ) along any direction θ, or around x  ̂to measure 
the spin length ∣⟨ Jy⟩∣.
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down on an O h J( / ) time scale (that is, as soon as the state is no longer 
fully polarized) and thus cannot explain the emergence of scalable spin 
squeezing. Going beyond this heuristic rewriting, more rigorous argu-
ments can be made for the emergence of scalable spin squeezing in 
the dipolar XY Hamiltonian (Methods).

In particular, in power-law interacting systems, scalable spin squeez-
ing has been recently conjectured to be closely related to CSB (ferro-
magnetic XY) order6,7,9,10. The mean-spin direction is the order 
parameter of such a system, and thus, in the ordered phase, it should 
equilibrate to some non-zero value; this is clearly a prerequisite for 
scalable squeezing, because the denominator of the squeezing para
meter, ξR

2, is precisely the square of the mean-spin length, J� �y
2 (equa-

tion (2)). More subtly, the low-energy spectrum associated with 
ferromagnetic XY order is expected to consist of so-called Anderson 
towers, wherein the energy is proportional to J z

2  (Methods)36,37.  
Crucially, this leads to the emergence and persistence of OAT-like 
dynamics even until late times, Ot Nh J( / ); these dynamics twist the 
initial quantum fluctuations, shrinking the minimum variance in  
the yz plane (equation (2)), thus leading to scalable spin squeezing. 
Finally, let us emphasize that even this picture is only approximate:  
the eventual thermalization of the dipolar XY model implies that  
its dynamics (even at low energies) cannot be perfectly captured  
by OAT10.

For the dipolar XY interactions that we investigate here, CSB, and 
thus scalable squeezing, is expected in d = 2 (refs. 6,7,9,10) but not in 
d = 1 (refs. 7,10). To this end, we measure the squeezing dynamics in 

systems ranging from N = 2 × 2 to 10 × 10 atoms. In principle, determin-
ing the minimum squeezing parameter requires optimizing over both 
time and θ for each system size; as N increases, the optimal time, t⋆, is 
expected to increase while the optimal θ⋆ is expected to decrease. 
Analogous to our previous procedure, we begin by extracting θ⋆ at a 
fixed time t, and measuring the time evolution of ∣⟨ Jy⟩∣ and JVar( )θ⋆ ; 
the time at which the variance is minimized provides a self-consistent 
way to experimentally verify that we are working near the two-parameter 
optimum.

As depicted in Fig. 3a, the dynamics of ∣⟨ Jy⟩∣ at short times (t < 0.25 μs) 
collapse (that is, show a size-independent decay) for all N owing to rapid 
local relaxation of the magnetization (which can be analysed using 
spin-wave theory, Methods and ref. 38). At later times, ∣⟨ Jy⟩∣ decreases 
more slowly for increasing system size, indicative of CSB order. The 
dynamics of the variance also depend on N (Fig. 3b): the minimum 
variance improves and occurs at later times as the system size increases. 
From these measurements, for each system size, we compute the squeez-
ing dynamics and extract both the optimal squeezing parameter, ⋆ξR

2 , 
and the corresponding optimal interaction time, t⋆.

As previously mentioned, in the all-to-all interacting case, both 
optima are expected to scale with system size4,39. Recent theoretical 
work predicts that scalable squeezing can also arise in our 2D dipolar 
XY model9,10,18. This expectation is indeed borne out by our data. As 
shown in Fig. 3c,d, we find that ξ N≈ ν

R
2 −⋆  and t⋆ ≅ Nμ with ν = 0.18(2) and 

μ = 0.32(3); when correcting for detection errors, we find that 
ν = 0.25(5), whereas μ does not change. The exponent that we observe 
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Fig. 2 | Dynamical evolution of spin squeezing in an N = 6 × 6 array.  
a, Determination of the angle θ⋆ that minimizes the spin fluctuations for a  
fixed interaction time, t = 0.3 μs. The inset shows θ⋆(t) determined for different 
times, t. The dashed line in a and b corresponds to the uncorrelated case 
4Var( Jθ)/N = 1. b, Measurements of the spin length ∣⟨ Jy⟩∣ (red circles) and of the 
minimum variance JVar( )θ⋆  (blue circles). The diamond markers are the data 
corrected for the detection errors, as described in the Methods. The shaded 
regions represent the results of the unitary spin dynamics, without any free 
parameter, including 97.5 ± 1% (99 ± 1%) detection efficiency for ∣↑�  ( ∣↓�).  

c, Squeezing parameter ξ t( )R
2  as a function of time. The solid curves are 

parabolic fits used to determine the optimal squeezing parameter ⋆ξ R
2  and the 

optimal squeezing time t⋆. As in c, the shaded area shows simulations including 
±1% uncertainty in the detection efficiencies. d, Parametric plot of the variance 
as a function of the spin length. The coloured area, delimited by the black solid 
curve ξ = 1R

2 , depicts the region where entanglement exists in the system. The 
grey dashed curves correspond to entanglement depths of k and the dashed 
black curve to a maximal entanglement depth of k = 36. The black arrow shows 
the direction of increasing interaction time.
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for the optimal squeezing time is in agreement with that observed in 
the all-to-all coupled case, where t N≈

1/3⋆  (ref. 4). However, the scaling 
of the optimal squeezing parameter is significantly weaker than that 
predicted for both all-to-all interactions, as well as the dipolar XY 
model9,10. Again, we attribute this to a combination of experimental 
imperfections, which, when accounted for, leads to a relatively good 
agreement between theory and experiment as shown in Fig. 3b,c. We 
note that this difference in agreement for t⋆ and ξR

2⋆ is perhaps not 
unexpected; for example, measurement errors decrease the amount 
of achievable spin squeezing but do not change the optimal squeez-
ing time.

As schematically depicted in Fig. 1b, the fact that squeezing shows an 
optimum in time arises from a competition between the generation of 
entanglement and the curvature of the Bloch sphere. Microscopically, 
the squeezing dynamics causes the coherent superposition of states 
to wrap around the Bloch sphere, but squeezing (equation (2)) is meas-
ured by means of the variance projected in the plane perpendicular 
to the mean-spin direction. Thus, the curvature of the Bloch sphere 
leads to a noise distribution that deviates from an elliptical shape2 
and manifests as additional variance (Methods). This suggests that 
one can improve the optimum squeezing by using a time-dependent 
protocol. In particular, by rotating the elliptical noise distribution 
towards the equator, one can minimize the impact of the projection 
on the measured variance40,41.

To this end, working with a 6 × 6 array, we implement a discretized, 
single-step version of this protocol. We initialize the system in the same 
initial state, ψ(0)� = → →�∣ ∣ ⋯ , and let the squeezing dynamics proceed 
for t = 0.13 μs. Then, we perform a 25° rotation around the y axis to 
almost align the noise distribution’s major axis parallel to the equator 
(Methods). The subsequent dynamics of the squeezing parameter are 
shown in Fig. 4 (green data). Three effects are observed. First, the opti-
mal squeezing occurs at a later time, t⋆ ≅ 0.45 μs. Second, consistent 
with the intuition above, the system remains near its optimal squeezing 
value for roughly twice as long. Third, the value of the optimal squeez-
ing parameter is improved by roughly 1 dB, reaching a value of 
−3.6 ± 0.3 dB.

To perform sensing, it is desirable to freeze the squeezing dynamics 
while acquiring the signal of interest. The simplest way to do so is to 
turn off the Hamiltonian. However, it is challenging to directly turn off 
the dipolar exchange interaction between the Rydberg atoms.
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To this end, we use an alternate approach, in which Floquet  
driving26,27 engineers an effective dipolar Heisenberg interaction, 

σ σ∑H = − ⋅J
i j

a

r i jHeis
2
3 <

3

ij
3 , from our original XY model. Crucially, the 

Heisenberg interaction commutes with all collective-spin operators, 
ensuring that: (1) it does not change the spin squeezing and (2) it does 
not affect the sensing signal associated, for example, to the presence 
of a uniform external field. (The Floquet sequence that generates the 
Heisenberg interaction leads to a rescaling of the strength of an external 
field by a factor of 1/3.)

To explore this behaviour, we let our system evolve to the optimal 
squeezing time and then attempt to freeze the dynamics by means of 
the Floquet WAHUHA sequence shown in Fig. 5a (ref. 42). A full Floquet 
cycle lasts tF = 0.36 μs and for rapid driving,  JtF ≪ 2π, the time-averaged 
Hamiltonian is roughly HHeis (ref. 27). We repeat this experiment for 
different numbers of Floquet cycles ranging from n = 0 to 3. The Floquet 
dynamics of ∣⟨ Jy⟩∣ and JVar( )θ⋆  are illustrated in Fig. 5b,c. For perfectly 
frozen dynamics, each set of curves (with different n) would simply be 

off-set in time from one another. This expectation is in good agreement 
with the data. Indeed, as depicted in Fig. 5b, we observe that the dynam-
ics of ∣⟨ Jy⟩∣ are translated in time, except for a small downwards drift 
(indicated by the grey dashed line). We note that this downwards drift 
is significantly weaker than the intrinsic dynamics of ∣⟨ Jy⟩∣. Comparable 
behaviour is observed for ⋆JVar( )θ  (Fig. 5c). Finally, as illustrated by 
the squeezing parameter in Fig. 5d, the Floquet sequence prolongs the 
time scale over which squeezing remains below the SQL by nearly a 
factor three.

To conclude, our work represents the first observation, to our 
knowledge, of scalable spin squeezing in a many-body system with 
short-range, power-law interactions. It is complementary to the recent 
results obtained with Rydberg-dressed atoms43,44 and long-range inter-
actions in an ion string45. Our findings and methods are applicable to 
any quantum systems implementing the dipolar XY Hamiltonian, such 
as molecules19–22 or solid-state spin defects23. Within the context of 
tweezer arrays, our work lays the foundation for several research direc-
tions. First, by generalizing our approach to alkaline-earth Rydberg 
tweezer arrays46–48, it may be possible to map the spin squeezing from 
the Rydberg manifold to the so-called clock transition, to improve 
tweezer-based atomic clocks49,50. Second, by investigating squeez-
ing as a function of the initial polarization, for example, by introduc-
ing disorder in the initial state preparation, it may be possible to test 
theoretical predictions that spin squeezing in short-range interact-
ing systems is fundamentally distinct from that achieved in all-to-all 
coupled systems10. Finally, by implementing a continuous version of 
the multistep squeezing protocol, it may be possible to improve the 
scaling of the observed spin squeezing towards the Heisenberg limit.
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Methods

Experimental methods
The realization of the dipolar XY Hamiltonian relies on the 87Rb  
Rydberg atom tweezer array platform described in previous works28,51. 
We encode our pseudo spin states as ∣ ∣ S m↑� = 60 , = +1/2�J1/2  and 
∣ ∣ P m↓� = 60 , = −1/2�J3/2 , and couple them by using microwaves at 
17.2 GHz (Extended Data Fig. 1a). The microwave field is emitted by an 
antenna placed outside the vacuum chamber, leading to poor control 
over the polarization, due to the presence of metallic parts surround-
ing the atoms. To isolate the ↑� − ↓�∣ ∣  transition from irrelevant Zeeman 
sublevels we apply a roughly 45-G quantization magnetic field perpen-
dicular to the array.

Experimental sequence. Extended Data Fig. 1b shows the details of 
the full experimental sequence. After randomly loading atoms into 
1-mK deep optical tweezers (with a typical filling fraction of 60%), the 
array is assembled one atom at a time51. The atoms are then cooled to 
a temperature of 10 μK using Raman sideband cooling and optically 
pumped to g S F m� = 5 , = 2, = 2�F1/2∣ ∣ . Following this, the power of the 
trapping light is adiabatically ramped down reducing the tweezer depth 
by a factor of roughly 50. Then, the tweezers are switched off and the 
atoms are excited to the Rydberg state ↑�∣ . The excitation is performed 
by applying a two-photon stimulated Raman adiabatic passage with 
421- and 1,013-nm lasers. To generate ∣ ∣ ⋯ψ(0)� ≡ → →� , we first apply a 
global resonant microwave π/2 pulse around x, with a Rabi frequency 
Ω = 2π × 22.2 MHz. After an interaction time t, an analysis microwave 
pulse is applied to change the measurement basis. When measuring 
the Jθ variance, the Rabi frequency of the analysis pulse is reduced down 
to 2π × 4.1 MHz to perform rotations with a higher angular resolution. 
We note that the ∣ ∣↑� − ↓� transition frequency changes slightly when 
varying the microwave Rabi frequency. We attribute this to a light shift 
induced by couplings between the other components of the microwave 
polarization and the Zeeman sublevels of the 60S1/2 and 60P3/2 mani-
folds. We experimentally compensate for this effect by detuning the 
microwave (for example, for Ω = 2π × 22.2 MHz, the corresponding 
detuning is 2π × 3.5 MHz).

The experimental sequence (including detection, detailed below) 
is typically repeated for roughly 200 defect-free assembled arrays. 
This allows us to calculate the magnetization, spin correlations and 
variance by averaging over these realizations.

State-detection procedure. The detection protocol comprises three 
steps. In the first step, a 7.5 GHz microwave pulse (that is, the ‘freezing 
pulse’ in Extended Data Fig. 1) is used to transfer the spin population 
from ∣↓�  to the n = 58 hydrogenic manifold through a three-photon 
transition. Atoms in the hydrogenic states (labelled h �i∣  in Extended 
Data Fig. 1b) are essentially decoupled from those remaining in ↑�∣ , 
thus avoiding detrimental effects of interactions during the remainder 
of the read-out sequence. In the second step, a de-excitation pulse is 
performed by applying a 2.5 μs laser pulse on resonance with the tran-
sition between ∣↑�  and the short-lived intermediate state 6P3/2 from 
which the atoms decay back to 5S1/2. The final step consists of switching 
the tweezers back on to recapture and image (through fluorescence) 
only the atoms in 5S1/2 (while the others are lost). Thus we map the ↑�∣  
(respectively  ↓�∣ ) state to the presence (resp. absence) of the corre-
sponding atom.

Experimental imperfections
Several sources of state preparation and measurement error contribute 
to increasing (that is, worsening) the observed squeezing parameter.

State preparation errors. The preparation sequence is composed of 
two steps: the Rydberg excitation (stimulated Raman adiabatic passage) 
and the preparation of  ψ(0)�∣  by a microwave π/2 pulse. We estimate 

that the Rydberg excitation process is 98% efficient: on average, a fraction 
η = 2% of the atoms remains in the state ∣g� after excitation and hence do 
not participate in the dynamics. At the end of the sequence, these unini-
tialized atoms are imaged as a spin ↑�∣ . The π/2-microwave pulse is also 
imperfect due to the unavoidable influence of the dipolar interactions 
between the atoms during its application. Including them in numerical 
simulations (Numerical simulations methods), we find that the 
collective-spin state undergoes a slight squeezing dynamics during the 
preparation pulse, which reduces the initial polarization by roughly 1%.

Measurement errors. Owing to the finite efficiency of each step in the 
read-out sequence (Extended Data Fig. 1b), an atom in ∣↑�  (resp. ∣↓�) 
has a non-zero probability ϵ↑ (resp. ϵ↓) to be detected in the wrong 
state25. The main contributions to ϵ↑ are the finite efficiency 1 − ηdx of 
the de-excitation pulse and the probability of loss ϵ due to collisions 
with the background gas. As for ϵ↓, the main physical origin is the ↓�∣  
Rydberg state radiative lifetime. We use a set of independent measure-
ments and simulations to estimate these imperfections. We find to first 
order ϵ↑ ≅ ηdx + ϵ = 1.5% + 1.0% = 2.5% and ϵ↓ = 1.0%.

The finite detection errors impose a lower bound on the observed 
minimum variance. More specifically, the experimental magnetizations 
⟨ Jy,θ⟩ and variance Var( Jθ) are related to the same quantities ∼J� �y θ,  and 

∼JVar( )θ  without detection errors by the following equations (valid to 
first order in ϵ↑,↓):

∼

∼ ∼

∼

J
N

� � � � J

J � � J � N J

� N J

� � =
2
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By inverting the above equations, we calculate the mean-spin length 
and minimal variance free from detection errors (experimentally, the 
magnetization along the θ axis, not shown, verifies ∣⟨ Jθ⟩∣ ≪ N/2, leading 
to a negligible contribution to the correction). The data corrected in 
this way are shown as diamond symbols in the figures of the main text.

Numerical simulations methods
In this section, we provide a summary of the numerical methods used 
to simulate the experimental system and compare experimental find-
ings and theoretical predictions.

Krylov simulations. For system sizes 2 × 2, 3 × 3 and 4 × 4, numerical 
simulations were performed with Krylov methods using Dynamite52. 
Krylov methods are extremely accurate over the short time scales  
relevant to the experiment, so the numerical error associated with this 
method is negligible. Moreover, it is straightforward to implement the 
aforementioned experimental imperfections in these simulations, 
including missing atoms, finite-duration pulses, measurement errors, 
positional disorder and van der Waals interactions (the last two sources 
of error were described in ref. 25 and have a negligible effect on the 
squeezing). We note that simulating missing atoms and positional disor-
der requires significant sampling, which we find converges after rough-
ly 100 samples. Plugging the experimental parameters (interaction 
strengths, η and detection errors) into the numerics yields reasonable 
agreement with the data as shown, for example, in Figs. 2c and 3c. We 
attribute the remaining discrepancy to unaccounted for experimental 
imperfections: for example, the effects of other atomic levels outside 
the {↑, ↓, empty} manifold, decoherence or microwave control errors 
(resulting in roughly 3° of over or under rotation for Ω = 2π × 4.1 MHz).

Matrix-product operator evolution. For system sizes 6 × 6 and 8 × 8, 
we perform numerical simulations using exponential of matrix-product 
operators (MPO) as implemented in TenPy53. In this method, each step 
of time evolution is implemented as a MPO acting on the matrix-product 
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state, which increases the dimension of the matrices. Then, a trun-
cation is implemented to approximate the quantum state in a new 
matrix-product form with a reduced matrix dimension. Typically, the 
accuracy of the method is controlled by the so-called bond dimen-
sion χ, that is, the maximum allowable dimension of the matrices in 
the simulation. As the entanglement increases during the quantum 
dynamics, a larger bond dimension is required to achieve the same level 
of accuracy. In the spin-squeezing dynamics at experimentally relevant 
system sizes, the optimal squeezing occurs at early times. As a result, 
we find good convergence for bond dimensions ranging from χ = 64 
to χ = 128. We again implement the various imperfections discussed 
above to obtain reasonable agreement with the experimental results.

A larger bond dimension would be required to simulate the 
10 × 10-atom system compared to the 8 × 8 one. Whereas the result-
ing increase in computational memory is affordable, the associated 
increase in computation time is severe. Specifically, going from simu-
lating an 8 × 8 system with χ = 64 to a 9 × 9 system with χ = 128 increases 
the computation time from 2–3 to 8 days. This increase is partly due to 
the larger χ, and partly due to the fact that optimal squeezing occurs at 
a later time. For a 10 × 10 system, we estimate a required bond dimen-
sion of at least χ = 198, leading to a simulation time of roughly 30 days. 
This corresponds to the time required for simulating a single disorder 
realization of the Hamiltonian; to simulate the experimental error tree, 
we must sample roughly 100 realizations, making matrix product state 
numerics on the 10 × 10 system impractical.

Time-dependent variational Monte Carlo. Making use of the time- 
dependent variational principle, we time-evolve a pair-product state  
(or spin-Jastrow state7), proved to be extremely accurate in describing 
the dynamics of the dipolar XY model9. For all system sizes, we simulate 
the dynamics with open boundary conditions, in the ideal case: that is, 
we consider the evolution starting from the perfect coherent-spin state, 
and driven exactly by the XY dipolar spin Hamiltonian.

Comparison between experimental results and numerical 
simulations
The results from all simulations are summarized in Extended Data 
Fig. 2, including various degrees of experimental imperfections. The 
good agreement between the data and the Krylov and MPO simula-
tions including the state preparation and measurement errors shows 
that we understand most of the deviations between the experiment 
and the perfect dipolar XY dynamics. The simulations also highlight 
that even without detection errors, the imperfect state preparation 
contributes to the reduction of the squeezing parameter with respect 
to the perfect model.

As mentioned in the main text, although the experiment shows scal-
able squeezing, the observed scaling exponent is smaller than expected 
from the dipolar XY model. However, the results of the simulations 
for the perfect model indicates that the number of atoms used in the 
experiment (N ≤ 100) only allows us to reach the onset of the predicted 
asymptotic scaling.

Emergence of OAT-like squeezing dynamics in the dipolar  
XY model
In this section, we elaborate on the approximation of the d = 2 dipolar XY 
model by the OAT model plus ‘spin-wave’ corrections (described below).

Projective approximation. The basis of this approximation is that 
the dynamics generated by the dipolar XY model, starting from a 
coherent-spin state is, projectively equivalent to that of the OAT 
model at short times. Indeed the initial coherent-spin state lives in 
the sector of Hilbert space possessing the maximal collective-spin of 
modulus J2 = J( J + 1) with J = N/2, which contains only permutat
ionally symmetric states, that is, superpositions of Dicke states.  
Projecting onto this subspace, individual spin operators reduce to 

collective-spin operators, for example, P Pσ J N= 2 /J N i
µ

J N µ= /2 = /2  where 
μ = x, y, z and J N= /2P  is the projector on the Dicke-state manifold.  
Under the same projection, the dipolar XY Hamiltonian becomes 
equivalent to the OAT model: P PH J I= /(2 ) + const.J N J N z= /2 XY = /2

2 ,  where 
I J N N a r1/(2 ) = 2 [ ( − 1)] ∑ ( / )i j ij

−1
<

3  (refs. 18,38). This is nothing but an 
isolated Anderson tower36,37, or, equivalently, a quantum rotor with 
macroscopic spin length N/2 and moment of inertia I (henceforth, 
‘rotor model’).

The projective equivalence only holds under the assumption that 
the dipolar dynamics initialized in the Dicke-state manifold remains 
confined to it. This is clearly not the case, as the dipolar Hamilto-
nian (unlike the OAT) does not conserve J2. Nonetheless, CSB at the 
temperature corresponding to the initial coherent-spin state guar-
antees that the collective-spin modulus remains of O(N2), because 
the dynamics develops long-range spin–spin correlations. This 
suggests, therefore, that the evolved state may retain a large over-
lap with the Dicke manifold. Corrections to the projective equiva-
lence picture can be added in the form of spin-wave excitations, 
which describe the component of the wavefunction leaking into 
sectors with J < N/2. Such corrections are addressed in the next  
subsection.

Spin-wave corrections. Here, we provide further insight on the  
demagnetization dynamics and its scaling properties with the atom 
number N, as observed in Fig. 3a. It relies on the rotor and spin-wave 
(RSW) theory18,38, which allows one to write the magnetization as 

J J J� � = � � + � �y y yR SW. Here, J� �y R  is the magnetization of the macro-
scopic spin of length N/2 (the rotor) introduced in the above. It obeys 
the dynamics of the OAT model J I( ) /(2 )z

2 ; J� �y SW  is a (negative) spin- 
wave (SW) contribution, coming from linear excitations at finite  
momentum that are triggered by the quantum quench dynamics.

RSW theory quantitatively accounts for the magnetization dynam-
ics of systems with periodic boundary conditions, as shown by the 
excellent agreement with the time-dependent variational Monte Carlo 
results (Extended Data Fig. 3a)18. Owing to the very low density of 
spin-wave excitations triggered by the dipolar XY dynamics initialized 
in the coherent-spin state, the validity of RSW theory stretches to 
rather long times, well beyond those explored in our experiment. In 
particular, RSW theory explains the scaling properties of the mag-
netization dynamics at short times. As shown in the experimental data 
of Fig. 3a, as well as in the simulations in Extended Data Fig. 3a, the 
magnetization per spin shows an initial decay independent of system 
size up to a time scale tSW ≅ 1/(4J). On the contrary, the later dynamics 
acquire a strong system-size dependence. RSW theory indicates that 
the initial size-independent decay comes from the proliferation of 
spin-wave excitations (appearing in counter-propagating pairs) at a 
time scale tSW indicated by the first local minimum in Extended Data 
Fig. 3b, marking the saturation of the spin-wave population to its first 
maximum. By contrast, the later, size-dependent dynamics is domi-
nated by the rotor variable, which depolarizes as in the OAT model, 
namely over time scales growing as N . The longer persistence of 
magnetization for larger system sizes is the finite-size precursor of 
spontaneous symmetry breaking of the U(1) symmetry, which appears 
in the thermodynamic limit for both the OAT and dipolar XY models.

Multistep squeezing
In the main text, we implement the multistep squeezing protocol and 
demonstrate that it improves the optimal squeezing. Here, we provide 
further analysis from a theoretical perspective, as well as comparison 
between numerical simulation and experiments.

Physical intuition. The squeezing dynamics can be understood with-
in a semiclassical picture10: treating the total spin as an ensemble of 
classical points, the initial state ψ(0)�∣  is represented by a Gaussian 
distribution with the same variance N  along the z and x axes (that is, 



a disc in the xz plane); in the dynamics, each point rotates around the 
z axis with an angular velocity proportional to its z polarization. The 
corresponding classical equations of motion are:

x t x Nm
J zt
N

z t z

( ) = (0) + sin ,

( ) = (0),

(4)xy










∼

where J∼ and mxy are the effective coupling strength and the effective 
total spin length. Consequently, the circle roughly deforms into an 
ellipse in the xz plane. However, the ellipse is perfect only for small z 
and short times, that is, ≪∼J zt N  and thus ∼ ∼N J zt N J ztsin( / ) ≈  (Extended 
Data Fig. 4b). If such a condition were always satisfied, the squeezing 
parameter would keep improving for all time. Instead, the optimal 
squeezing is achieved when the deviation from a perfect ellipse (which 
happens at earlier times for larger z) becomes larger than the minor 
axis of the ellipse (Extended Data Fig. 4c). Therefore, a natural way to 
improve squeezing is to delay the time when such a deviation happens: 
before the deviation becomes the bottleneck, one can rotate the major 
axis of the ellipse towards the x axis (Extended Data Fig. 4d), so that 
the typical z value of the classical ensemble becomes smaller, delaying 
the non-elliptical deviation to later times (Extended Data Fig. 4e).

Comparison between numerics and experimental data. Similar 
to the single-step squeezing, we also performed time-evolving block 
decimation simulation for multistep squeezing dynamics, taking all 
experimental imperfections into account. The results are shown in 
Extended Data Fig. 5, where we observe a relatively good agreement 
between the numerics and the experimental data.

Data availability
The data are available from the corresponding author on reasonable 
request. 
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Extended Data Fig. 1 | Experimental sequence. a, Schematics of the atomic levels relevant for the experiment. b, Sequence of optical and microwave pulses (not 
to scale) used for all the experiments reported in Figs. 1, 2 and 3 of the main text.



Extended Data Fig. 2 | Minimum squeezing parameter as a function of  
atom number N. The circles and diamonds correspond to raw and corrected 
data, respectively. The solid coloured lines are power-law fits. The purple 
shaded region shows the simulations including 97.5 ± 1% (resp. 99 ± 1%) 
detection efficiency of ↑�∣  (resp. ∣↓�). The dashed curves represent the  
results of simulations of the XY dipolar model without state preparation and 
measurement errors (grey) and without detection errors only (pink). The 
dashed black curve represents the exact results for the OAT model. The 
inaccessible region corresponds to values of the squeezing parameter  
smaller than 2/(2 + N)2.
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Extended Data Fig. 3 | Magnetization dynamics and its contributions.  
a, Dynamics of the magnetization per spin for the dipolar XY model on a 
periodic square lattice. Results from tVMC calculations and RSW theory for 
various system sizes (N = 16, . . . , 144). We also show the rotor contribution to 
the magnetization, corresponding to an effective one-axis-twisting model  
(see text). b, Spin-wave (SW) contribution to the magnetization.



Extended Data Fig. 4 | Schematic depicting the multi-step squeezing protocol. a, Semi-classical description of a y-polarized initial state. b, c, Normal spin 
squeezing dynamics. d, e, Multi-step squeezing dynamics enabled by an extra rotation along the mean spin direction.
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Extended Data Fig. 5 | Multistep squeezing, comparison between data and 
simulation. Measurements of the squeezing parameter obtained with two 
different procedures. The first one (purple dots) is the original sequence 
illustrated in Fig. 1(c). The second one (dark green dots) is the multistep 
sequence. The shaded regions show the simulations including 97.5 ± 1%  
(resp. 99 ± 1%) detection efficiency of ↑�∣  (resp. ∣↓�). These data correspond  
to a 6 × 6 array.
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