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Emergent hydrodynamics in a strongly 
interacting dipolar spin ensemble

C. Zu1,2,7, F. Machado1,2,7, B. Ye1,7, S. Choi1, B. Kobrin1,2, T. Mittiga1,2, S. Hsieh1,2, 
P. Bhattacharyya1,2, M. Markham3, D. Twitchen3, A. Jarmola1,4, D. Budker1,5, C. R. Laumann6, 
J. E. Moore1,2 & N. Y. Yao1,2 ✉

Conventional wisdom holds that macroscopic classical phenomena naturally emerge 
from microscopic quantum laws1–7. However, despite this mantra, building direct 
connections between these two descriptions has remained an enduring scientific 
challenge. In particular, it is difficult to quantitatively predict the emergent ‘classical’ 
properties of a system (for example, diffusivity, viscosity and compressibility) from a 
generic microscopic quantum Hamiltonian7–14. Here we introduce a hybrid solid-state 
spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives 
rise to the emergence of unconventional spin diffusion at nanometre length scales. In 
particular, the combination of positional disorder and on-site random fields leads to 
diffusive dynamics that are Fickian yet non-Gaussian15–20. Finally, by tuning the 
underlying parameters within the spin Hamiltonian via a combination of static and 
driven fields, we demonstrate direct control over the emergent spin diffusion 
coefficient. Our work enables the investigation of hydrodynamics in many-body 
quantum spin systems.

Even in the absence of a precise microscopic description, classical 
hydrodynamics provides a powerful framework for characterizing 
the macroscopic behaviour of local, conserved quantities, such as 
energy. Understanding whether and how it emerges in the late-time 
dynamics of strongly interacting quantum systems remains an essential 
open question. For a quantum system coupled to an environment, it is 
unsurprising that the late-time behaviour becomes classical; indeed, 
dephasing from the bath destroys the intrinsic quantum coherences of 
the system. However, even for an isolated, many-particle quantum sys-
tem, conventional wisdom holds that late-time dynamics usually exhibit 
an emergent classical description; understanding how to prove this fact 
and the required conditions has remained an enduringly hard ques-
tion7–13,21,22. At the same time, it has also motivated seminal advances. 
On the theoretical front, precise analytic insights have been obtained 
in the context of integrable systems using generalized hydrodynamics 
and non-integrable systems using perturbative approaches12,13,22–26. On 
the experimental front, tremendous progress in time-resolved meas-
urement techniques has enabled the direct observation of emergent 
classical diffusion in several classes of quantum system2,3,27–31.

There are, however, a wide variety of classical dynamical ‘universality 
classes’ other than diffusion: aside from the simple case of free (ballis-
tic) behaviour, two well known classes are Kardar–Parisi–Zhang dynam-
ics and Sinai diffusion32–35. Here we report time-resolved experiments on 
a closed quantum system, which exhibits an unconventional approach 
to late-time diffusion characterized by a long-lived, non-Gaussian 
polarization profile.

Our experimental platform consists of two strongly interacting spe-
cies of electronic spins in diamond: substitutional nitrogen defects  

(P1 centres) and nitrogen-vacancy (NV) colour centres36,37. By control-
ling the relative density of these two species, we demonstrate the ability 
to prepare inhomogeneous spatial profiles of a conserved spin density, 
as well as to locally probe the resulting nanoscale spin dynamics (Fig. 1). 
These dynamics can be tuned via three independent controls: (1) the 
initial spin polarization, (2) the average spacing between spins and  
(3) the magnitude of the on-site random fields.

Exploring this phase space leads us to an understanding of how 
the details of the microscopic spin Hamiltonian modify conventional 
diffusion. By tracking the local autocorrelation function of the spin 
polarization, Sp(t), we observe the emergence of a long-time, diffu-
sive power law, Sp(t) ∝ t−3/2, for over an order of magnitude in time t 
(Fig. 1b). However, the details of this autocorrelation function over a 
broad range of timescales indicate that, following local initialization, 
the spin polarization distribution remains non-Gaussian throughout 
the timescales accessible in the experiment; this originates from the 
presence of strong disorder in our system, which leads to a distribu-
tion of local diffusion coefficients and a Yukawa-like spin polarization 
profile (Fig. 1d).

Hybrid spin platform
We choose to work with samples containing a P1 density of about 
100 ppm and an NV density of about 0.5 ppm, leading to a geometry 
where each spin-1 NV centre is surrounded by a strongly interacting 
ensemble of spin-1/2 P1 centres (Fig. 1a). In this geometry, the NV cen-
tre naturally plays the role of both a polarization source and a local 
probe for nearby P1 centres. These roles rely on two ingredients. First, 
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the NV centre can be optically initialized (to m = 0s
NV , where ms is the 

spin quantum number) and read out using green laser illumination, 
which does not affect the P1 centre. Second, the NV and P1 centres can 
coherently exchange spin polarization when brought into resonance 
via an external magnetic field (Fig. 2a)37; this polarization exchange is 
driven by the Δms = ±2 components of the magnetic dipole–dipole 
interaction:

∑H
J

r
A S P S P B S P= − ( [ + ] + ), (1)

i i
i i i i iNV−P1

0

NV,
3

+ + − − z z

where J0 = (2π) × 52 MHz nm3 characterizes the strength of the dipolar 
interaction, rNV,i is the distance between the NV centre and the ith P1 
centre, Ai and Bi capture the angular dependence of the dipolar interac-
tion (Supplementary Information), and S± and P± are raising and lowering 
operators for the NV and P1, respectively. We note that HNV–P1 corre-
sponds to the energy-conserving terms of the dipolar interaction, when 
restricting our attention to the NV spin subspace { 0 , −1 } (Fig. 2a).

In addition, the P1 centres also exhibit dipolar interactions among 
themselves driven by the Δms = 0 component:
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where Ai j,
∼

 and Bi j,
∼  are the analogous angular coefficients between the 

ith and jth P1s (Supplementary Information).
When the NV and P1 are off-resonant, we observe an NV depolariza-

tion timescale, Tdepol = 2.3 ± 0.1 ms, consistent with room-temperature, 
spin-phonon relaxation (Fig. 2b)36. By applying a magnetic field, 
B = 511 G, along the NV axis, the NV’s 0 ↔ −1  transition becomes 
resonant with the P1’s |− ⟩ ↔ |+ ⟩1

2
1
2  transition (Fig. 2a), and we find that 

Tdepol decreases by over two orders of magnitude to 8.9 ± 0.6 μs 
(Fig. 2b)37. We emphasize that the reduced Tdepol should not be thought 
of as extrinsic decoherence, but rather as a consequence of coherent 
NV–P1 interactions (Fig. 2e).

Local spin polarization
By continuously repolarizing the NV centre via green laser excitation, 
one can use HNV–P1 to transfer spin polarization to nearby P1 centres; 
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Fig. 1 | Nanoscale spin diffusion in a long-range interacting quantum system. 
a, Schematic depicting the emergence of hydrodynamics in a strongly 
interacting dipolar spin ensemble. Optical pumping (green arrow) of the NV 
centre (red) enables it to behave as a polarization source for nearby P1 centres 
(blue), resulting in the preparation of a local, inhomogenous spin-polarization 
profile. Dynamics then lead to the spreading of this profile as a function of time. 
b, Dynamics of the survival probability Sp(t) of the ν = 1/3 P1 subgroup in sample 
S2 at T = 25 K following a polarization period of τp = 30 μs. After an initial 
transient, Sp(t) approaches a robust power-law decay of t−3/2, indicating diffusion. 
The late-time dynamics are accurately described by the diffusion equation (grey 
dashed line). The red dashed line corresponds to spin diffusion with an 
additional long-range correction C klr

3 (Methods, Extended Data Fig. 9).  

Inset: relative residuals for the two spin diffusion models. In the hydrodynamical 
regime (grey shaded region), both models capture the data. c, Illustration of our 
semiclassical description for the spin-polarization dynamics. Each pair of spins 
exchanges polarization via the dipolar interaction. The presence of other nearby 
P1 spins leads to an energy mismatch δ and a homogeneous broadening γ; these 
parameters are independently measured (Extended Data Fig. 4). d, Initializing 
with unit polarization, a robust non-Gaussian polarization profile emerges from 
the semiclassical model for all experimentally accessible timescales. The 
crossover from a Yukawa to a Gaussian polarization profile is accurately 
captured by including the disorder-induced dynamical modification, C k P∂t kdyn

2 , 
in the diffusion equation, with Cdyn = 204 ± 45 nm3 (Methods, Extended  
Data Fig. 7). All errors represent 1 s.d. accounting statistical uncertainties.
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this polarization is further spread-out among the P1s by HP1–P1. The 
duration of the laser excitation, τp, then controls the amplitude, shape 
and width of the local spin polarization. A longer τp leads to a larger 
local P1 polarization, which acts as a ‘frozen core’ around the NV cen-
tre (Fig. 2b, inset), suppressing dipolar spin exchange from HNV–P1

38. 
This suppression suggests that Tdepol, measured after P1 polarization, 
should be substantially enhanced. This is indeed borne out by the data. 
As shown in Fig. 2b, d, Tdepol is extended by an order of magnitude as a 
function of increasing τp. The increase saturates as τp approaches the 
spin–phonon relaxation time and the polarization process reaches a 
steady state (Fig. 2d)39.

Probing nanoscale spin dynamics
To study the long-time dynamics associated with the dipolar-induced 
spreading of our initial polarization profiles, it is essential to distinguish 
between early-time local equilibration and late-time emergent dynam-
ics. To this end, we introduce an experimental technique that allows us 
to explicitly observe local thermalization. In particular, after polarizing 
for τp, we utilize a microwave π-pulse to shelve the NV population from 

0  into the highly off-resonant +1⟩ state (Fig. 2c, bottom inset). Next, 
we perform a global microwave π-pulse on the |− ⟩ ↔ |+ ⟩1

2
1
2  P1 transition, 

flipping the ensemble’s spin polarization. Finally, we unshelve the NV 
population, effectively preparing an initial condition where the NV is 
antipolarized relative to the P1 ensemble (Fig. 2c, top inset).

The dynamics starting from this antipolarized configuration are 
markedly distinct. First, the NV polarization quickly changes sign 
and reaches a negative value, indicating local thermalization with the 
oppositely oriented P1 ensemble. Second, the larger the antipolariza-
tion (controlled by τp), the faster the NV initially decays (Fig. 2c, d). 
Crucially, this allows us to extract a characteristic timescale for local 
thermalization, τth ≈ 12 μs.

Returning to the polarized case, we can now leverage the shelving 
technique to experimentally isolate the emergent late-time dynamics. 
In particular, we polarize for time τp, shelve the NV and then wait for a 
variable time τw to allow the P1 polarization to spread. Upon unshelving 
the NV, we observe a two-step relaxation process, as depicted in Fig. 2f. 
After an initial step of rapid local equilibration, the late-time dynamics 
exhibit a τw-independent collapse. Crucially, this demonstrates that for 
t > τth, the NV polarization functions as a local probe of the amplitude 
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Fig. 2 | Probing local spin-polarization dynamics using the NV centre.  
a, In the absence of a magnetic field, the P1’s spin-1/2 sublevels are degenerate, 
whereas the NV’s spin-1 sublevels exhibit a zero field splitting, 
Dgs = (2π) × 2.87 GHz. By applying an external magnetic field, the P1 and NV 
centre can be brought into resonance. b, When the NV and P1 are off-resonant 
(orange), B = 360 G, the NV exhibits a stretched exponential decay of about 
e t T−( / )0.8

1
NV

 (dashed line) with T = 2.3± 0.1 ms1
NV , consistent with spin–phonon 

relaxation. When the NV is resonant with the ν  = 1/3 subgroup of P1s (green), 
B = 511 G, depolarization occurs much more rapidly and is strongly dependent 
upon the polarization time τp; a longer τp leads to a larger local polarization of P1 
centres (inset) and a correspondingly longer NV relaxation time. The dashed 
green lines correspond to the NV dynamics as captured by our semiclassical 
model (Methods). c, NV depolarization dynamics with an anti-polarized 
ν = 1/3 P1 ensemble (top inset). Depolarization occurs in two distinct steps: an 
initial decay, ≲t τ ≈ 12 μsth , corresponding to local equilibration with the P1 

ensemble, followed by late-time diffusion. Bottom inset: the pulse sequence 
describes the preparation of the anti-polarized P1 ensemble via the application 
of laser light (green) and microwave pulses (MW, blue and red). d, Depolarization  
time, Tdepol (extracted as the 1/e decay time of the initial polarization), as a 
function of τp for different effective P1 densities ν. The anti-polarized case for 
ν = 1/3 is denoted as P1 flip (c above). As τp approaches P1’s T1 ≈ 1 ms, Tdepol 
saturates. e, P1 spin coherence time, T2, for different dynamical decoupling 
sequences, Ramsey (0.032 ± 0.005 μs), XY-8 (1.27 ± 0.02 μs)] and an interaction 
decoupling sequence (4.4 ± 0.1 μs using DROID; Extended Data Fig. 1); 
coherence times are extracted from single exponential fits (dashed blue lines). 
Inset: data plotted in semi-log. f, Depolarization dynamics for τp = 1,000 μs with 
variable NV-shelving time, τw (inset). The τw-independent collapse of the 
late-time data confirms the NV’s role as a local probe of the P1’s polarization 
dynamics. All data are taken using sample S1 at room temperature 
T ≈ 300 K. Errors represent 1 s.d. accounting statistical uncertainties.
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of the P1 polarization profile, P(t, r), at position r; alternatively, one can 
also think of the NV’s polarization as an autocorrelation function that 
captures the survival probability of the P1’s polarization dynamics40.

Observation of emergent diffusion
At late times, the conservation of total polarization and the dynamical 
exponent z = 2 determine the characteristic behaviour of the survival 
probability in d dimensions, Sp(t) ∝ t−d/2; the simplest hydrodynamic 
model capturing this corresponds to Gaussian diffusion:

r r
r

rP t D P t
P t

T
Q t∂ ( , ) = ∇ ( , ) −

( , )
+ ( , ), (3)t

2

1

where D is the diffusion coefficient. The latter two terms in equation 
(3) are motivated by our experiment: Q(t, r) is a source term that char-
acterizes the P1 polarization process and T1 is an extrinsic relaxation 
time, after which the experimental signal becomes suppressed (Meth-
ods). To maximize the experimental window for observing emergent 
hydrodynamics, we work at low temperatures T = 25 K, where the NV’s 
T 1

NV time extends by an order of magnitude, and the P1’s T1 time extends 
by a factor of three (Methods, Extended Data Fig. 3)41. The source Q(t, r) 
contains contributions from each of the randomly distributed NVs, 
whose finite density produces an overall uniform background polari-
zation that decays exponentially in time. Isolating the nanoscale 
polarization dynamics from this background (Methods), we observe 
a robust power-law decay of the survival probability, Sp(t) ∝ t−3/2, for 
over a decade in time, demonstrating the emergence of spin diffusion 
(Fig. 1b)40. Extracting the corresponding diffusion coefficient from 
Sp(t) = Ptotal/(4πDt)3/2 requires one additional piece of information, 
namely, the total amount of spin polarization, Ptotal, transferred to the 
P1 ensemble. Fortunately, this is naturally determined by combining 
the height of the measured polarization background with the density 
of NVs, which we independently calibrate using a spin-locking experi-
ment (Supplementary Information). This enables us to experimentally 
extract the spin-diffusion coefficient: D = 0.35 ± 0.05 nm2 μs−1 (Table 1).

An unconventional approach to diffusion
Although the hydrodynamic model in equation (3) captures the correct 
dynamical exponent, it assumes that the dynamics follow Gaussian 

diffusion at all times. However, disorder induces important modifica-
tions to this picture and leads to a novel dynamical correction. In par-
ticular, around each P1 centre there is a distinct local environment, 
arising from both positional disorder and the presence of on-site ran-
dom fields (generated by other paramagnetic spin defects; Supple-
mentary Information). This leads to a spatially varying local diffusion 
coefficient. As an initial polarization profile spreads, its dynamics 
naturally average over an increasing number of local P1 environments. 
This generates a dynamical modification to the diffusion equation, 
whose leading contribution is C k P t∂ ( )tdyn

2
k  (Methods):

k k




⋯P t Dk C k P t∂ ( ) = − + ∂ + ( ), (4)t t

2
dyn

2

where Pk(t) is the Fourier component of the polarization with wavevec-
tor k. This term induces two striking modifications to the diffusive 
dynamics. First, the early time polarization profile follows a Yukawa 
form, er

r ℓ1 − / , and only crosses over to a Gaussian at late times (Methods). 
Second, the relationship between the height of the polarization profile 
Sp(t), and its width, given by Dt, is fundamentally altered; more pre-
cisely, to faithfully extract D from Sp(t), one must account for the 
non-Gaussianity of the polarization profile.

To connect our nanoscale spin dynamics to these disorder-induced 
hydrodynamical features, we utilize a semiclassical description of the 
polarization evolution based on Fermi’s golden rule (Fig. 1c, Methods). 
Accounting for both positional disorder and on-site random fields, 
numerical simulations of the polarization dynamics exhibit excellent 
agreement with the experimentally measured Sp(t) for over three dec-
ades in time (Fig. 1b). Our semiclassical model also provides direct access 
to the spatial polarization profile, which remains robustly non-Gaussian 
throughout the timescale of the experiment, indicative of unconventional 
diffusion. Remarkably, the polarization profile precisely exhibits the 
predicted Yukawa-to-Gaussian crossover (Fig. 1d) and enables us to 
extract the coefficient of the dynamical modification (equation (4))  
as Cdyn = 204 ± 45 nm2. A few remarks are in order. First, this coefficient 
defines a physical length scale, ℓ C= = 14.3 ± 1.6 nmdyn , which sets the 
decay of the Yukawa form, er

r ℓ1 − / , of the polarization profile. More 
intuitively, ℓ can be thought of as the length scale over which the 
disorder-induced variations of the local P1 environments start to 
become averaged out. Thus, only when the polarization expands to a 
characteristic size much larger than ℓ, will the dynamics approach 
Gaussian diffusion.

Second, as evinced in Fig. 1d, for a wide range of intermediate time-
scales, the polarization profile is well described by a simple exponen-
tial, which modifies the relationship between the survival probability 
and the diffusion coefficient. This modification can be computed 
analytically and takes the form of a geometric factor g = 2π1/3, wherein 
D → gD (Table 1, Methods). Crucially, the mean squared displacement 
of the polarization profile, r t D t( ) = 6 r

2
⟨ ⟩2 , provides an independent 

measure of the diffusion coefficient42,43. As highlighted in Table 1, only 
by accounting for the disorder-induced geometric factor do we observe 
agreement between the diffusion coefficient extracted from Sp(t) and 

r t( )2 ; this agreement directly demonstrates the non-Gaussian nature 
of the observed dynamics.

Microscopic control of emergent spin diffusion
We now demonstrate the ability to directly translate changes in the under-
lying microscopic Hamiltonian to changes in the emergent macroscopic 
behaviour. To engineer the Hamiltonian, we exploit the hyperfine struc-
ture of the P1 defect, enabling control over the effective density and the 
on-site random field disorder. In particular, sweeping the strength of the 
external magnetic field from 490 G to 540 G reveals five spectroscopically 
distinct subgroups of the P1 ensemble36,37, each containing a different 
fraction of the total P1 spins, with density ratios ν = {1/12, 1/4, 1/3, 1/4, 1/12} 
(Fig. 3a, Supplementary Information). Thus, tuning the external magnetic 

Table 1 | Spin diffusion coefficients across all samples, 
temperatures, P1 densities and disorder strengths.

Effective 
density

ν = 1/3 ν = 1/4 ν = 1/12

Sample S1 S2 S1 Ωdrive =  
0 MHz

S1 Ωdrive = (2π)  
× 11.7 MHz

S1

D (nm2 μs−1) 0.28 ± 0.06 0.35 ± 0.05 0.25 ± 0.06 0.33 ± 0.09 0.11 ± 0.03

gD (nm2 μs−1) 0.82 ± 0.17 1.03 ± 0.13 0.74 ± 0.18 0.95 ± 0.26 0.33 ± 0.08

D r2 (nm2 μs−1) 0.98 ± 0.03 1.09 ± 0.02 0.66 ± 0.04 0.95 ± 0.02 0.21 ± 0.03

Accounting for the appropriate non-Gaussian geometric factor, g = 2π1/3, yields agreement 
between the diffusion coefficient extracted from the survival probability and that extracted 
from the growth of r 2  (computed via our semiclassical model). Samples S1 and S2 both 
contain a P1 density of 110 ppm, and their NV densities are 0.7 ppm and 0.3 ppm, respectively 
(Supplementary Information). Measurements on S1 are performed at room temperature and 
measurements on S2 are taken at T = 25 K. For sample S1, we also consider two additional 
tuning parameters: (1) different effective P1 densities, ∈ν {1/3, 1/4, 1/12}, tuned via the 
hyperfine structure (Fig. 3c), and (2) different disorder strengths, W, tuned via continuous 
microwave driving (Fig. 3d). The reported uncertainties include propagated uncertainties 
from other experimentally extracted parameters (for example, T1 and ρNV). Despite 
overlapping error bars, a detailed analysis (Supplementary Information) confirms that the 
driven diffusion coefficient is statistically larger than the undriven case. Errors represent 1 s.d. 
accounting statistical uncertainties.
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field provides discrete control over the average spacing between resonant 
P1 spins. As shown in Fig. 3c, the survival probability for both the ν = 1/4 
and ν = 1/12 P1 subgroups exhibits much slower spin diffusion than the 
ν = 1/3 subgroup. This is consistent with the presence of weaker interac-
tions arising from the larger spin spacing, and leads to smaller values for 
the measured diffusion coefficient (Table 1).

Finally, one can also experimentally control the strength of the on-site 
random field disorder via continuous driving. As these fields are domi-
nated by the Ising portion of the interactions between the various P1 
subgroups, rapid microwave driving of a single subgroup causes its 
contributions to the disorder to become averaged out (Fig. 3b). Indeed, 
by bringing the NV into resonance with one of the ν = 1/4 subgroups (black 
arrow, Fig. 3a), while driving the other ν = 1/4 subgroup, we observe faster 
spin diffusion, consistent with a reduction in disorder (Fig. 3d, Table 1).

Outlook
Looking forward, our work opens the door to a number of intriguing 
future directions. First, the presence of long-range, power-law interac-
tions can lead to different dynamical universality classes44. Within our 
semiclassical model, the polarization dynamics are governed by an 

effective roughly 1/r6 power law (equation (11) in Methods). Interest-
ingly, much like disorder, this particular power law also leads to an 
unconventional approach to diffusion, albeit governed by a distinct 
non-analytic correction C klr

3 (Methods); our data (Fig. 1b, inset) do 
not exhibit clear signatures of this power-law correction and we leave 
its observation to future work. Second, the ability to experimentally 
isolate local equilibration dynamics naturally points to the study of 
many-body localization and Floquet thermalization45,46. In long-range 
interacting systems, the precise criteria for delocalization remain 
unknown47,48, whereas in Floquet systems, the late-time dynamics 
involve a complex interplay between heating and hydrodynamic behav-
iour11,49. Finally, the presence of a Yukawa polarization profile in our 
system is reminiscent of an open question in the biochemical sciences, 
namely, what is the underlying mechanism behind the widespread 
emergence of Fickian yet non-Gaussian diffusion in complex fluids15–20; 
in such systems, it is notoriously difficult to change the microscopic 
equations of motion, suggesting the possibility for our platform to be 
utilized as a controllable ‘simulator’ of soft, heterogeneous materials. 
A direct route for exploring this question is to leverage subdiffraction 
imaging techniques or magnetic field gradients to measure correlation 
functions between spatially separated NVs50,51.
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Fig. 3 | Controlling emergent hydrodynamics by engineering the 
microscopic Hamiltonian. a, Depolarization rate, T depol

−1 , of the NV centre as a 
function of magnetic field after τp = 1 μs. The NV exhibits five distinct 
resonances (blue shaded regions) corresponding to five different subgroups of 
P1s with density ratios ν ∈ {1/12, 1/4, 1/3, 1/4, 1/12}. For panels b, d below, we fix 
the magnetic field strength, B = 496.5 G, wherein the NV is resonant with a 
ν = 1/4 P1 subgroup (indicated by the arrow); the top axis shows the frequency 
of the P1 subgroups at this field strength. b, Fixing a polarization time, 
τp = 300 μs, and an interaction time t = 3 μs (inset), we probe the polarization 
transfer between the NV and the resonant ν = 1/4 P1 subgroup. By driving the 
other P1 subgroups, one can effectively reduce the magnitude of the on-site 
disorder by ‘echoing’ out a portion of the Ising piece of the dipolar interactions. 
Sweeping the microwave driving frequency, ω, we observe an enhanced NV 
decay (red dots with blue guide to the eye) when it is resonant with the ν = 1/12, 
ν = 1/4 and ν = 1/3 subgroups as well as an additional ‘forbidden’ transition, F 

(Supplementary Information). By comparing against numerical simulations for 
a single P1 spin (dashed black line), we conclude that—aside from the ν = 1/3 
resonance where an additional hyperfine depolarization channel plays a 
crucial role—echoing out disorder enhances the coherent many-body 
interactions and leads to faster dynamics. c, Dynamics of Sp(t) for different 
effective P1 densities with τp = 100 μs; control over the P1 density is achieved by 
tuning the external magnetic field to bring the NV into resonance with the 
ν = 1/3, ν = 1/4 and ν = 1/12 P1 subgroups. A smaller P1 density leads to 
correspondingly slower spin diffusion (Table 1). d, Dynamics of Sp(t) for 
different on-site disorder strengths with τp = 300 μs. Under continuous 
microwave driving (Ωdrive = (2π) × 11.7 MHz) of the other ν = 1/4 P1 subgroup 
(inset), the effective disorder is suppressed and spin diffusion is enhanced 
(Table 1). Dashed lines in c, d correspond to Sp(t) obtained via equation (3). All 
experimental data are taken using sample S1 at room temperature 
T ≈ 300 K. Errors represent 1 s.d. accounting statistical uncertainties. 
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Methods

Coherence measurement of the P1 ensemble
To directly measure the coherent properties of P1 system, we first apply 
a laser pulse with duration τp = 1,000 μs to polarize the ν = 1/3 P1 subgroup, 
and then shelve the NV spin into the highly off-resonant +1  sublevel for 
a fixed time τw = 30 μs (Extended Data Fig. 1). Within this shelving period, 
we apply various dynamical decoupling sequences (Ramsey, XY-8 and 
interaction decoupling) to measure the P1 spin-coherence time T2. 
Although the XY-8 is designed to cancel the Ising portion of the Hamil-
tonian, we implement a recently introduced robust interaction decou-
pling sequence (termed DROID-60) that decouples the full dipolar 
interaction52,53. After unshelving the NV spin back to 0 , we wait for 
τ0 = 10 μs ≈ τth to let it locally thermalize with the nearby P1 spins, and 
detect the resulting NV polarization as a measure of local P1 polarization.

Crucially, as shown in Fig. 2e, when the dipolar interaction is fully 
cancelled, we observe a substantial enhancement of T2, demonstrat-
ing that the spin dynamics are dominated by coherent interactions. 
In principle, such techniques can be employed to directly control the 
interaction strength between P1 spins, and thus provide a powerful 
tool for studying how the interaction strength affects the resulting 
transport dynamics. Unfortunately, it is technically challenging to 
utilize such pulse sequences to study long-time diffusive dynamics. 
The reason is the inevitable existence of pulse errors in the microwave 
control system. In particular, pulse errors can lead to two effects:  
(1) the cancellation of dipolar interactions is no longer perfect and  
(2) total magnetization is no longer conserved, thus leading to addi-
tional overall decay of the polarization.

In our experiment, to effectively decouple the P1–P1 dipolar interac-
tions, one needs the pulse spacing to be much smaller than the typi-
cal interaction timescale 1/J. As a result, to study hydrodynamics at 
late times, one needs to apply more than 104 pulses. With such a large 
number of pulses, even very small pulse imperfections could lead to 
an accumulated errors that affect the diffusive dynamics substantially. 
Tackling such issue requires a careful engineering of the microwave 
delivery system to enable the delivery of precise, homogeneous pulses. 
We hope to further explore this direction in future work.

Continuous diffusive model
To verify and study the late-time hydrodynamics of the system, we build 
up a phenomenological diffusion equation for the polarization profile. 
By solving this equation, we derive the functional form of the survival 
probability measured in our experiment. This allows us to extract the 
diffusion coefficient, as well as to study the subleading correction to 
diffusion in our disordered long-range interacting system.

Gaussian diffusion and associated survival probability. In a diffusive 
system, the polarization dynamics should be, at leading order, captured 
by the following diffusion equation:

r r
r
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where P(t, r) is the polarization as a function of both time t and position 
r, D is the diffusion coefficient, T1 is the intrinsic depolarization time-
scale of our system and Q(t, r) corresponds to the polarization source 
(the NV). Considering our experimental geometry and polarization 
protocol, we assume that the polarization process occurs over a short 
distance b while the laser is on and can be modelled by:








r
( )

Q t
Γ

b
τ t

t

( , ) = (2π )
e − < < 0

0 > 0

, (6)
r b

2 3/2
− / 2

p
2 2

where Γ is the polarization rate. The presense of a finite b reflects the 
range of the polarization transfer process from the NV to the P1 ensem-
ble and guarantees that the polarization does not diverge at short times.

This problem can be solved via a Green’s function formalism (Sup-
plementary Information), which yields the solution:
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where the function F(x) is defined as

F x
x

x( ) =
1
π

e
− erfc( ). (8)
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In Fig. 3b, d, we also consider the situation where an off-resonant P1 
subgroup is driven with a microwave field to ‘cancel’ the Ising interac-
tion and thus reduce the on-site field strength. This leads to a faster 
diffusion with coefficient Ddr.

To capture the hydrodynamics in this setup, we must incorporate 
this diffusion coefficient in equation (5) after the polarization process 
(t ≥ 0)—throughout polarization the system remains undriven and the 
diffusion coefficient is D. We also note that the decay timescale 
(denoted as T 1

dr) may also get modified. Following the similar approach 
to analyse the undriven case (Supplementary Information), we obtain 
the survival probability for the experiment as













































































rP t

Γ
D T

F
D

D
t

b
D

T

F
D

D
t τ

b
D

T

( , = 0)

=
e

4π
e × + /

− e + + / .

(9)

b
DT D

D
T

T
t

T

T
T

D

D

τ

T

2

1
3/2

1

− dr 2

1

− dr

p

2

1

dr 1

1

1 dr

p

1
dr

1
dr

1
dr

Details of fitting with diffusion equation. Up until now, we have been 
considering the dynamics of a single NV centre surrounded by an en-
semble of P1 spins. However, the finite NV defect density ρNV in our sam-
ple leads to the polarization overlap between different NV–P1 systems. 
Owing to the randomness in the NV centre positions, this effect can be 
captured by a simple constant background. In particular, as each NV 
is randomly placed in the system and we measure all NVs, the above 
overlap effect is spatially averaged and can be treated as a homogene-
ous background whose dynamics is governed only by depolarization. 
Given the volume of each NV–P1 system, V = 1/ρNV, the background 
polarization is simply written as:

∫P t
V

Γ t ρ ΓT( ) =
1

e d = (e − e ). (10)
τ

t t T t T t τ T
bg −

0
−( − )/

0 NV 1
− / −( + )/0 1 1 p 1

p

Combining the background polarization Pbg with the survival prob-
ability P(t, r = 0) (that is, equations (7) and (9)) yields the experimental 
signal, from where we extract the diffusion coefficient D and the range 
of polarization b (using an independently calibrated T1; Extended Data 
Fig. 3). To be specific, for the sample S1 at room temperature and for 
each ν, we fit to a global value of D and b, while letting Γ change across 
different τp (Extended Data Fig. 2). In the driven experiment, we use 
the values of b, Γ, D and T1 from the undriven case, as well an indepen-
dently calibrated T 1

dr (see below) to fit the data and extract Ddr as the 
sole fitting parameter (Fig. 3d). For the sample S2 at low temperature 
(which has a similar P1 density to sample S1) fit to D, Γ and b with T1 
being independently characterized from the late-time decay (grey 
curve in Fig. 1b). Here, we emphasize that in the fitting functional form, 
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ρNV (which is independently measured; Supplementary Information) 
provides the necessary length scale that connects the measured decay 
timescales to the diffusion coefficient.

Extraction of late-time T1 time. One important parameter in extract-
ing the dynamics of the survival probability Sp(t) from the observed 
NV dynamics is the extrinsic polarization time T1 of the P1 centres. This 
depolarization timescale can have multiple contributions (for exam-
ple, phonon depolarization, Jahn–Teller instability and interactions 
with other off-resonant spins39) and is, thus, highly dependent on the 
details of the experiment, such as temperature, defect density and 
application of additional driven fields. To this end, we extract it via 
the late-time behaviour of the polarization dynamics under different 
conditions; at late time, the local polarization profile has expanded 
and the observed dynamics is dominated by the slowly decay of the 
background polarization (Extended Data Fig. 3).

Derivation of geometric factor correction to diffusion
Although both Gaussian and exponential (Fig. 1) polarization profiles 
exhibit the same diffusive scaling for the survival probabilities, the 
difference in their shapes modifies the relationship between the height 
and the width of the distribution and thus how one can extract the 
diffusion coefficient. In particular, in the Gaussian case this relationship 

is given by S t P r( ) = /(2π )p
g

tot
2 3/2

 whereas in the exponential case it is 

given by S t P r( ) = /[8π( ) ]p
e

tot
2 3/2 , where Ptot is the total polarization in 

the system. Replacing with r Dt= 62  and equating the two survival 
probabilities leads to a constant factor correction g = 2π1/3 between 
the two diffusion coefficients. As such, the extracted diffusion  
coefficients (extracted assuming a Gaussian profile), should be  
corrected by multiplying its value by g. Crucially, the corrected diffu-
sion coefficients are in excellent agreement with the diffusion coeffi-
cients directly extracted via the growth of the mean squared  
displacement r 2 .

Semiclassical model
Although the precise many-body quantum dynamics of our model are 
dictated by the underlying microscopic Hamiltonian, its calculation 
remains beyond the realm of possibility of current numerical tech-
niques. To this end, we build a semiclassical model of the polarization 
dynamics based on the the microscopic details of the Hamiltonian 
that allows us to quantitatively characterize the observed dynamics 
(for example, extracting the diffusion coefficient), as well as investi-
gate properties beyond the current experimental reach (for example, 
studying the spatial profile of the polarization). Crucially, this model 
provides a direct and quantitative connection between the underlying 
microscopic Hamiltonian and the emergent macroscopic dynamics.

At its core, our approach relies on the calculation of the 
polarization-transfer rate, Γij, between any pair of P1 spins via Fermi’s 
golden rule (Fig. 1c):
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Each of the relevant parameters is independently measured: 
γ ≈ 0.5 μs−1 represents the interaction-induced linewidth and is char-
acterized by the spin-echo decoherence time of the NV centre; δi rep-
resents the strength of the on-site random fields and is drawn from a 
distribution with width W ≈ (2π) × 4.5 MHz, characterized by the NV 
linewidth (Extended Data Fig. 4). The analogous polarization transfer 
rate between NV and P1 spins is obtained by replacing Ai j,

∼
 with Ai. For 

details of the derivation, see Supplementary Information.
Armed with the rate of polarization transfer, we numerically study 

the polarization dynamics of the system by reducing the exponentially 

large quantum state of the system (2N coefficients for N spins), into 2N 
coefficients that capture the individual populations ρi,σ of each of  
the levels σ of each spin i of the system. For P1, { }σ ∈ − , +1

2
1
2

, whereas  
for NV, σ ∈ {0, −1}. One then obtains a differential equation for  
the populations:

∑ρ Γ ρ ρ ρ ρ∂ = ( − ), (12)t i σ
j

i j i σ j σ i σ j σ, , , , ′ , , ′

where σ  corresponds to the other level of the spin i and σ′ corresponds 
to the level of spin j such that interactions lead to a transition σσ σσ′ ↔ ′.

To simulate the spin-polarization process, we further extend the dif-
ferential equations to include the remaining ground and excited states 
of the NV centre (Supplementary Information). Accounting for both 
positional disorder and on-site random fields, numerical simulations 
of the polarization dynamics exhibit excellent agreement with the 
experimentally measured Sp(t) (Extended Data Fig. 5).

Computing the diffusion coefficient from the semiclassical 
description
One of the features of our semiclassical model is the ability to access the 
spatial profile of the polarization, enabling an independent characteri-
zation of the diffusive dynamics via the direct study of the spread of the 
entire polarization profile. In particular, we leverage our semiclassical 
model to compute the mean squared displacement of the polarization 
and observe the characteristic linear growth with time (Extended Data 
Fig. 6). From this linear growth, we can directly extract the diffusion 
coefficient of the dynamics via

r D t= 6 , (13)r
2

2

where the coefficient 6 = 2d includes the information about the dimen-
sionality d of our system.

Focusing our analysis on the dynamics of the P1 centres, we can dis-
regard the details of the NV and transform our semiclassical model 
into a set of linear differential equations on the polarization of the P1 
centres P ρ ρ= −i i j,↑ ,↓

:

( )∑P Γ P P= − (14)i
j

ij j i
̇

Crucially, this linearity condition enables us to map this set of differ-
ential equations into a continuous-time random walk of the polarization 
through the positions of the defects. Such an approach enables us to 
consider the polarization dynamics of much larger system sizes (up to 
N ≈ 4 × 104 P1s) because we no longer need to build the dense transition 
rate matrix Γij and solve for the associated eigenvalue problem.

Our simulation protocol is then as follows. We first generate an 
ensemble of P1 spins with random positions ri and onsite energies δi 
surrounding a P1 spin at position r0 = (0, 0, 0). Starting with the polar-
ization at r0 at t = 0, we compute its dynamics through the system as 
follows. When the polarization is on spin i (at position ri), the hopping 
rate away from spin i is given by Γ Γ= ∑j ijtot ; thus the polarization remains  
in spin i for time δt which is a Poisson random variable with mean Γ tot

−1 . 
The probability of hopping to spin j is given by the branching ratio 
β Γ Γ= /j ij tot. We repeat this process until a time tmax ≈ 1,000 μs has elapsed.

Computing the mean squared displacement. For each random walk, 
we record the displacement squared of the polarization from its original 
position r0 as a function of time t. Averaging over many random walks 
immediately yields the mean squared displacement of the polariza-
tion profile.

Unfortunately, this quantity is particularly sensitive to the system 
size considered (which sets an upper bound on the maximal r t( )2 ), 
specially given the long-range nature of the transition rates (Extended 



Data Fig. 6). To this end, we perform a finite size scaling, where we 
extrapolate the infinite system size behaviour by studying r t( )2  for 
different system sizes N ∈ {103, 153, 203 253, 303} and assuming that the 
system-size effects are linear with the inverse lengthscale of the system 
L−1 ≈ N−1/3. We find that this ansatz agrees with the observed numerical 
data, and leads to a long-lived linear increase in the r t( )2 , from which 
we can extract the diffusion coefficient in our semiclassical description. 
We estimate the error in our analysis by fitting equation (13) to differ-
ent early time regimes (from 0 to Tmax ∈ [30, 300] μs) and taking its 
value as half the range of extracted diffusion coefficients.

Dynamical correction to diffusion
The experiments average over both NV centres within the sample and 
shot-to-shot fluctuations in the environment. Thus, the quantity of 
interest is the disorder-averaged diffusion kernel, or Green’s function. 
In frequency and momentum space, this is given by:

G ω
ω Dk Σ ω

( , ) =
1

−i + + ( , )
(15)2k

k

where −iω + Dk2 describes the eventual diffusive dynamics at asymp-
totically late times (small frequencies ω) and long wavelengths (small 
wavevectors k), and the self-energy ∑(k, ω) captures the corrections 
due to disorder averaging. Focusing on the leading corrections in this 
limit, the small ω and k expansion of ∑(k, ω) can be constrained by not-
ing that it is (1) analytic, (2) isotropic and (3) probability conserving:

ω D k Ck iω ℓ k ℓ kΣ( , ) = ′ + + … + ( − )( + ′ + …) + …, (16)2 4 2 2 4 4k

where ℓ C=2
dyn in the main text and C is the next leading order coeffi-

cient. Note that in the time domain, this self-energy directly leads to 
equation (4).

A few remarks are in order. First, the D′k2 term simply corrects the 
bare diffusion coefficient, D → D + D′, and can be absorbed into a new 
definition of D. Second, the Ck4 and ℓ ω k( − i )2 2 terms have the same 
scaling dimension near the diffusive fixed point (where z = 2); they are 
accordingly the leading irrelevant corrections in the renormalization 
group sense. Third, the dynamical corrections (involving powers of ω) 
do not appear in translationally invariant classical hopping systems, 
where the only corrections in ∑ arise due to the spatial Fourier transform 
of the hopping kernel. This picture is modified in disordered systems, 
where a diagrammatic analysis of the disorder average generically 
yields the dynamical corrections. Finally, although equation (16) fol-
lows on very general symmetry grounds, we can strictly derive the 
dynamical correction by computing the one-loop self-energy in a con-
tinuum model with a spatially random local diffusion coefficient (Sup-
plementary Information).

We now tease out the phenomenological role of the dynamical cor-
rection term for the observed diffusion. Focusing on the short-range 
case (without kα−d correction for long-range interacting systems with 
power-law exponent α):

⇒k k
( )

( )
G ω

ω ℓ k Dk
G t

ℓ k
( , ) =

1

−i 1 + +
( , ) =

e

1 +
. (17)

Dk t ℓ k

2 2 2

− / 1+

2 2

2 2 2

In the t → 0 limit, the polarization profile approaches the Yukawa poten-
tial form kG t( , = 0) =

ℓ k

1

1 + 2 2  (ref. 54). Returning to real space in three 
dimensions

G t
ℓ r

( , = 0) =
e

4π
. (18)

r ℓ− /

2r

We note that this form should be interpreted as the shape to be 
expected of G at early times in the crossover to Gaussian behaviour. 

It does not reduce to a delta function because we have neglected the 
higher-order k and ω corrections that govern the short-distance, 
early-time dynamics.

However, the presence of this dynamical correction has important 
late-time effects as well. From equation (17), one observes that the large 
k modes now decay with a constant rate. This implies that the 
short-distance singularity of the Yukawa-potential decays only after 
the timescale ℓ D/2 .

We end this section with a few more remarks. First, at even later 
times, the weight of the singularity decays exponentially whereas the 
diffusive behaviour of the survival probability decays as a power law 
in time, Sp(t) ≈ t−d/2, dominating the late-time physics. This is in agree-
ment with the presence of the late-time diffusive fixed point. Second, 
such a singularity cannot be experimentally observable owing to the 
short-range cutoff of our system: we measure the polarization of the 
NV centres, which must remain finite. One can understand this singu-
larity as being regularized by the short-range details arising from the 
discrete nature of our randomly positioned spin system. Finally,  
while the D′k4 term has the same scaling dimension as ω ℓ k( − i ) 2 2, its  
inclusion in the analysis above does not change the qualitative state-
ments, nor does it alter the nature of the early time behaviour (it only  
appears in the exponent of equation (17) and does not change the t → 0  
behaviour).

Extracting dynamical correction Cdyn

To extract the strength of dynamical correction, we consider the same 
methodology when extracting the diffusion coefficient from the rate 
equation model, but instead of computing the mean squared displace-
ment, we focus on the details of the polarization profile. From our 
analytical derivation, the dynamics of such polarization profile are 
dominated by a diffusive and a disorder-generated term at late enough 
times. The value of C ℓ=dyn

2 can be then obtained by fitting the result-
ing evolution to the dynamics under the diffusion correction (includ-
ing the dynamical correction), starting from a Yukawa form for the 
polarization profile (Fig. 1). To minimize finite size and time biases, we 
consider the dynamics between tmin and tmax, the latter set to the time 
when the polarization per spin at the edge is larger than 3 × 10−6. The 
reported value of ℓ corresponds to an average over the values extracted 
for different tmin over the range where the values are consistent (last 
three data points in Extended Data Fig. 7). We summarize the extracted 
ℓ in Extended Data Table 1.

Long-range modifications to diffusion
Although we leave the detailed derivation in the Supplementary Infor-
mation, we summarize our conclusion on the long-range modification 
here. With the presence of long-range interaction, the decay rate of a 
k-mode f(k) in general can be written as:

k ⋯f Dk C k Ck( ) = + + + (19)α d2
lr

− 4

where D, Clr and C are model-dependent coefficients. This result imme-
diately highlights three import regimes. When d < α < d + 2, the leading 
power is no longer the k2 term and instead a kα−d term becomes the 
leading contribution—the system is no longer diffusive and enters the 
Lévy-flight regime44,55. When d + 2 < α < d + 4, the leading order term 
remains the diffusive term but the subleading correction that control 
the approach to diffusion is set by a kα−d term56. When d + 4 < α, neither 
the leading term nor the subleading term arises from the long-range 
transfer rate and the dynamics do not deviate substantially from the 
short-range case.

We now emphasize that, in the window of intermediate power laws, 
d + 2 < α < d + 4, the survival probability exhibits a qualitatively different 
approach (~t−α/2+1) to the diffusive fixed point. For the three-dimensional 
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systems that we focus on, at late times, the survival probability P(r = 0, t) 
should follow:

P t
Dt

C
D t

( , = 0) =
1

(4π )
+

2π
(20)3/2

lr
2 3 2r

when α = 6 (our experimental platform), and

rP t
Dt

C
D t

( , = 0) =
1

(4π )
+

15
32π

(21)3/2 3/2 7/2 5/2

when α ≥ 7.
Clearly, the approximately t−2 approach is distinct from conventional 

diffusion where the approach is proportional to approximately t−5/2 
(Extended Data Fig. 8).

We also remark that, similar to a previous discussion, we should 
convolve the above survival probability with the polarization process 
(both polarization duration and short-range details) to obtain the cor-
rect form for our experimental signal.

Data availability
Source data are provided with this paper. Further data are available 
from the corresponding author upon reasonable request. Source data 
are provided with this paper.
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Extended Data Fig. 1 | Experimental sequence to measure the coherence of 
P1 ensemble. For XY-8 and interaction decoupling sequences, we fix the 
interval between pulses to be τ = 10 ns, and increase the number of repetition N. 

The P1 π(π/2) pulse duration is set to 36 ns (18 ns). In the interaction decoupling 
sequences, the pulses at bottom side correspond to rotations along x− ˆ (blue) 
and y−  ̂(orange) axes.
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Extended Data Fig. 2 | Extraction of diffusion constants for sample S1. 
Fitting of the depolarization data in sample S1 for different groups ν (different 
panels) and different pumping times τp (different colours). For each group, we 
fit the experimental data across all τp data to a diffusive model in equation (7) 

with an additional background Pbg. From this procedure, we extract both D  
and b, as well as, a τp-dependent Γ, which captures the reduction in efficiency  
of the NV–P1 polarization transfer owing to the saturation of polarization near 
the NV.



Extended Data Fig. 3 | Measurement of late time extrinsic decay time T1 for 
different samples and under driving. a, b, Extraction of the extrinsic 
depolarization time of samples S1 and S2 at room and low temperature (25 K) 
and after polarizing for τp = 1,000 μs (a) and τp = 30 μs (b). The late time 
behaviour follows an exponential decay with timescale given by 1.0 ± 0.1 ms and 
2.6 ± 0.2 ms, respectively. c, To extract the modified intrinsic depolarization 
time T 1

dr of ν = 1/4 P1 subgroup with the presence of a strong microwave driving 

Ω = (2π) × 11.7 MHz on the other ν = 1/4 subgroup, we apply the following pulse 
sequence: after a laser pumping time τp = 1000 μs, we wait for 1 ms so that the 
initial P1 spatial polarization profile diffuses to a nearly homogeneous 
background which decays with intrinsic depolarization time of P1 centres. We 
then turn on a continuous microwave driving on the other ν = 1/4 P1 subgroup, 
and measure the resulting background decay; the resulting timescale is given 
T = 0.9± 0.21

dr  ms.
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Extended Data Fig. 4 | Determination of the extrinsic decoherence rate γ 
and on-site random field distribution δi. a, We estimate the extrinsic 
decoherence rate γ in the rate equation using the measured spin-echo 
coherence time of the NV. After polarizing the NV centre via a green laser, a π/2 
pulse prepares the NV spin into a coherent superposition of m = 0s  and 
m = − 1s , which is allowed to dephase during a time t. A π pulse at the centre of 

the sequence ‘echos’ out the on-site random field generated by the nearby P1 
centres, thus provides a direct estimation of the extrinsic decoherence time of 
a single spin in the system. We fit the spin-echo decay using a form e t T−( / )1.5

2
echo

(ref. 57) and extract T = 1.9± 0.1μs2
echo  γ T( ≈ 1/ ≈ 0.5μs )

−1
2
echo . b, The distribution of 

on-site random fields δi is directly determined using the intrinsic linewidth of 
the NV spin state. After polarizing the NV centre via a green laser, we apply a 
microwave π pulse and sweep its frequency ω across the NV 0  to −1  transition. 
To avoid microwave power broadening of NV transition, we choose a sufficient 
weak microwave π pulse with duration 2 μs. Note that the measured linewidth is 
dominated by interactions with the dense P1 ensemble (W ≈ (2π) × 4.5 MHz) 
(Supplementary Information). The presence of nuclear 13C spins leads to a 
much smaller contribution to the linewidth of about (2π) × 0.3 MHz (ref. 58). 
Crucially, both effects are taken into account in our analysis by sampling δi 
directly from the measured spectrum.



Extended Data Fig. 5 | Agreement between semiclassical model and 
experimentally observed dynamics. Given the approximately equal P1 
density of both the sample S1 and S2, we simulate the the dynamics of a single 
NV defect surrounded by NP1s = {300, 225, 75} P1 centres for the groups ν = {1/3, 
1/4, 1/12}, respectively. In the polarization protocol, we choose Γp = 0.1 μs−1 for S1 
and Γp = 0.25 μs−1 for S2. The subsequent polarization dynamics of the NV centre 
is given by the difference in populations between the 0  and −1  states. For the 
ν ∈ {1/3, 1/4} groups of S1, we observe excellent agreement with the 
experimental data for over four orders of magnitude in τp and throughout then 

entire experimental timescale using γ = 0.5 μs−1. For the ν = 1/12 group of S1, we 
observe good agreement, albeit with a smaller range of τp and using γ = 1.5 μs−1. 
We believe this discrepancy arises from a much larger separation between the 
strength of the on-site fields and the flip-flop rate of the ensemble. For the ν = 
1/3 group of S2, we also observe excellent agreement throughout the entire 
dynamics, where we use γ = 0.3 μs−1. The agreement observed in the NV 
polarization decay in both samples gives us confidence that our semiclassical 
model can capture the polarization dynamics in the sample and provide an 
accurate calculation of the diffusive properties of the spin ensemble.
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Extended Data Fig. 6 | Summary of extraction of diffusion coefficient.  
a–c, Extraction of diffusion coefficient of sample S2 at low temperature.  
a, Growth of r 2  for different system sizes N and the infinite system scaling 
(black line). b, Finite size scaling of r 2  to N → ∞ assuming a linear in L−1 ≈ N−1/3 
correction for representative values of t. c, Fitting the early-time growth of r 2  
up to different times Tmax ∈ [30, 300] leads to slightly different values of the 
diffusion coefficient, whether including a constant offset (light blue) or not 

(dark blue). Considering the fit without an offset, the final diffusion coefficient 
is taken to be the average with an uncertainty given by half the range of 
diffusion coefficients. d, For the different experimental conditions using the 
parameters discussed in Methods, we extract the diffusion coefficient from 
the growth of r 2 , which is in great agreement with the experimentally 
extracted values after correcting for the non-Gaussian polarization profile 
(Table 1).



Extended Data Fig. 7 | Determination of the length scale ℓ. Extracted ℓ for 
different samples and different P1 groups as a function of the early time cut-off 
tmin. Averaging over the last three data points, where the ℓ are consistent, yields 

the reported value of ℓ. The red dashed line corresponds to the final value and 
the shaded area is the associated uncertainty.
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Extended Data Fig. 8 | Long-range modification to conventional diffusion. The presence of a long-range k3-term parametrically modifies the approach, 
A t S t Dt( ) = ( ) − (4π )p p

−3/2, to the late-time Gaussian fixed point, as high-lighted in a three-dimensional, disorder-less numerical simulation, with lattice constant a 
and diffusion coefficient D.



Extended Data Fig. 9 | Fitting of experimental data with different 
modifications to diffusion equation. Fitting of the diffusive description with 
different terms and fixed T1 = 2.6 ms in sample S2 with τp = 30 μs. Different 
columns represent fitting to a different range of the data (highlighted by the 
red shaded region). The inclusion of more terms in the diffusive description 
allows for a better fit of the data; however, the improvement in the fitting range 

is only significant when the fitting regimes includes early time data (≲30 μs), as 
highlighted in the second row of the relative residuals. All data are presented 
with logarithmically spaced y axis, except in the grey shaded region where a 
linear regime is used to highlight the fluctuations of the residuals around 0. Fits 
in Fig. 1b correspond to the third column.
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Extended Data Table 1 | Extracted ℓ from the spin polarization dynamics 
for the different sample considered (S1 and S2) and the different P1 
subgroups

With decreasing density, we observe a corresponding increase in the lengthscale ℓ. Crucially, ℓ remains 
always larger than the P1–P1 distance, highlighting that its value is not a simple consequence of the discrete 
nature of the spins in our system. Note that to extract Cdynℓ = , we must utilize our semiclassical model to 
obtain the full spatial profile of the polarization decay.
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