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The direct measurement of topological invariants in both engineered and naturally occurring quantum
materials is a key step in classifying quantum phases of matter. Here, we motivate a toolbox based on time-
dependent quantum walks as a method to digitally simulate single-particle topological band structures.
Using a superconducting qubit dispersively coupled to a microwave cavity, we implement two classes of
split-step quantum walks and directly measure the topological invariant (winding number) associated with
each. The measurement relies upon interference between two components of a cavity Schrödinger cat state
and highlights a novel refocusing technique, which allows for the direct implementation of a digital version
of Bloch oscillations. As the walk is performed in phase space, our scheme can be extended to higher
synthetic dimensions by adding additional microwave cavities, whereby superconducting circuit-based
simulations can probe topological phases ranging from the quantum-spin Hall effect to the Hopf insulator.
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Topological phases elude the Landau-Ginzburg para-
digm of symmetry breaking [1]. Unlike conventional
phases, they do not exhibit order parameters that can be
locally measured. Rather, their distinguishing features are
hidden in quantized, nonlocal topological invariants, which
are robust to all local perturbations [2,3]. While tremendous
theoretical progress has been made toward the full classi-
fication of topological phases of matter [4,5], a general
experimental platform for the direct measurement of
topological invariants is lacking. Here, we demonstrate
that time-dependent quantum walks comprise a powerful
class of unitary protocols capable of digitally simulating
single-particle topological band structures and directly
observing the associated nonlocal invariants.
A quantum walk [6–11] describes the motion of a

particle with internal (spin) degrees of freedom moving
on a discrete lattice. Formally, the quantum walk is
comprised of two unitary operations [see Fig. 1(a)]: a coin
toss, denoted R̂ðθÞ, which rotates the spin state, and a spin-
dependent translation, denoted T̂↑↓, which translates the
particle’s position by a single lattice site in a direction
determined by the internal spin state. In our cavity quantum
electrodynamics implementation of the quantum walk, the
particle is encoded as a coherent state of an electromagnetic
cavity mode [12,13], where its position is defined in the

cavity’s phase space, as shown in Fig. 1(b). Its spin degrees
of freedom are formed by a superconducting transmon
qubit [14] with basis states fj↑i; j↓ig. To enable the qubit
state to control the direction of motion of the coherent state,
we realize a strong dispersive coupling between the cavity
and qubit,

Ĥ=ℏ ¼ ωqσ̂z=2þ ωcâ†â − χqcâ†âσ̂z=2; ð1Þ

where ωq;c are the qubit and cavity transition frequencies,
respectively, â (â†) is the lowering (raising) operator for the
cavity mode, σz is the Pauli z matrix for the qubit levels,
and χqc is the dispersive interaction strength [see Fig. 1(c)].
Dispersive coupling produces a qubit-dependent shift in the
cavity oscillation frequency. Viewed in the rotating frame
of the cavity at ωc, the dispersive interaction causes the
coherent state to move clockwise (counterclockwise) at a
rate χqc=2 through phase space when the qubit is in the j↑i
(j↓i) state. Thus, free evolution under the dispersive
interaction precisely enables the spin-dependent translation
needed for the quantum walk [15,16].
We realize a particular class of quantum algorithm known

as the split-step quantum walk [17,18], which alternates
two coin tosses (with rotation angles θ1 and θ2) between
two spin-dependent translations so that each step of
the walk consists of the unitary operation ÛWðθ1; θ2Þ ¼
T̂↑↓R̂ðθ2ÞT̂↑↓R̂ðθ1Þ [see Fig. 1(a)]. The coin-toss operations
R̂xðθÞ ¼ eiθσ̂x=2 are applied via short (7.5-ns) coherent
microwave pulses resonant with the qubit transition. By
waiting for a time interval t ¼ 2πð10χqcÞ−1 ¼ 124 ns
between successive coin tosses, we allow the dispersive
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coupling to naturally implement the spin-dependent trans-
lation. This time interval determines the lattice on which the
walk takes place; here, it is a circular lattice of ten sites in
cavity phase space [Fig. 1(b)].
We begin by performing a pair of topologically distinct

split-step quantum walks, the first (topologically trivial)
with unitary Û0 ¼ ÛWð3π=4; π=4Þ, and the second (topo-
logically nontrivial) with Û1 ¼ ÛWðπ=4; 3π=4Þ. To dem-
onstrate the robustness of the winding number, we also
implement an additional pair of walks which are contin-
uously connected to Û0 and Û1 (e.g., without closing the
gap). The experimental sequence is shown in Fig. 2(a).
The cavity mode is initialized (Dβ) in a coherent state jβi
with jβj2 ¼ 8 photons, after which the walk unitary is
repeatedly applied. To directly reconstruct the walker’s
quantum state on the phase-space lattice, we first projec-
tively measure the qubit state and subsequently measure the
Q function of the cavity mode [19]. Figure 2(b) depicts the
measured lattice site populations after each step of the walk.

We observe the expected ballistic expansion of the coherent
state in cavity phase space, consistent with theoretical
predictions (population fidelities greater than 90%).
As the walk unitary ÛW directly couples the particle’s

spin and position degrees of freedom, the resulting
dynamics mimic those of spin-orbit interacting materials.
More precisely, the unitary quantum-walk protocol simu-
lates continuous evolution under an effective spin-orbit
Hamiltonian ĤW , which generates the same transformation
as a single step of the walk when ÛW ¼ e−iĤW . Since the
unitary is translation invariant, the effective Hamiltonian
exhibits Bloch bands of quasienergy �ϵðkÞ, where the
quasimomentum k lies in the Brillouin zone; Figs. 3(a)
and 3(b) show, respectively, the band structures underlying
the walks Û0 and Û1. The corresponding eigenstates
consist of extended Bloch waves with spin polarization
�n⃗ðkÞ [17]. Depending on symmetry, the band structure of
such spin-orbit-coupled Hamiltonians can feature quan-
tized topological invariants. In the case of the split-step

quantum walk, Γ ¼ e−iπA⃗·σ⃗=2 plays the role of a so-called
chiral symmetry [17,20], with Γ†ÛWΓ ¼ −ÛW . This sym-
metry constrains the spin polarization vector n⃗ðkÞ to lie on a
great circle of the Bloch sphere, perpendicular to A⃗ ¼
( cosðθ1=2Þ; 0; sinðθ1=2Þ) [Figs. 3(c) and 3(d)]. Thus, the
number of times n⃗ðkÞ wraps around the origin as k varies
through the Brillouin zone—known as the winding or
Chern numberW—naturally defines the topological invari-
ant [17] of the walk. While the energy spectra of Û0 and Û1

are identical, they lie in topologically distinct phases, with
Û0 having zero winding number and Û1 a winding number
of unity. Analogous to the number of twists in a closed
ribbon, winding numbers are quantized and robust to local
perturbations [2].
The direct measurement of topological invariants in

solid-state materials is an outstanding challenge [21–23],
owing to the nonlocal nature of the order parameter. Our
method makes use of a time-dependent modification of the
quantum walk, which, in the Hamiltonian picture, mimics
an adiabatic translation of the underlying band structure
across the Brillouin zone [24–28]. The resulting dynamics
effectively constitute digital Bloch oscillations, a phenome-
non whereby a particle on a lattice subjected to a constant
force undergoes oscillations [29] due to the periodicity of
the Brillouin zone. In our system, these oscillations
manifest as a refocusing of the quantum walker to its
initial position, with a Berry phase—a signature of the
band-structure topology (see Fig. 3)—imprinted during the
evolution. In practice, this refocusing depends on choosing
the number of steps in the walk such that the accrued
dynamical phase—which has opposite signs in either band
and thus impedes refocusing—effectively vanishes [19,24].
In the general setting, one can experimentally determine the
condition for dynamical phase refocusing by performing
spectroscopy while varying the number of steps.

(b)

(c)

(a)

FIG. 1. Quantum-walk implementation in cavity phase space.
(a) Schematic representation of a split-step quantum walk on a
line, with rotations R̂ðθ1Þ and R̂ðθ2Þ and spin-dependent trans-
lation T↑↓. Red (blue) lines show spin-up (-down) components
moving left (right). The opacity of each circle indicates the
population on the corresponding lattice site. (b) Set of ten cavity
coherent states on which the walk takes place, in the phase space
of the TE210 cavity mode. (c) Cavity resonator and qubit. The
fundamental (TE110, orange) mode at ωR ¼ 2π × 6.77 GHz is
used to measure the qubit state. This mode couples strongly
[κ ¼ 2π × 600 kHz ¼ 1=ð260 nsÞ] to a 50-ohm transmission line
via the readout port at the center of the cavity. The TE210 cavity
mode (green) at ωc ¼ 2π × 7.41 GHz is long lived with an
inverse lifetime, κ ¼ 2π × 4 kHz ¼ 1=ð40 μsÞ. The transmon
qubit (coin) has transition frequency ωq ¼ 2π × 5.2 GHz, relax-
ation times T1 ¼ 40 μs and T�

2 ¼ 5.19 μs, and is dispersively
coupled to both cavity modes, with the dispersive shift of the
walker mode, χqc ¼ 2π × 1.61 MHz.
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In addition to the dynamical phase, upon traversing
the Brillouin zone, the particle’s spin winds around the
Bloch sphere, encoding its path in the accumulated Berry
phase [30],

ϕB ¼ i
Z
BZ
hk; n⃗ðkÞj∂kjk; n⃗ðkÞidk ¼ π ×W; ð2Þ

which thus becomes an observable manifestation of the
winding numberW—the Hamiltonian’s topological invari-
ant. As one cannot directly observe the quantum mechani-
cal phase of a wave function, measuring this Berry phase
requires an interferometric approach. To this end, we
perform the time-dependent walk with the cavity-qubit
system initialized in a Schrödinger cat superposition of two
coherent-state components: One component undergoes
the walk, while the other is unaffected by the unitaries. The
Berry phase thus appears as the relative phase between
the two components and is observable via direct Wigner
tomography.

The additional steps used in performing the time-
dependent walks are shown in dashed boxes in Fig. 2(a).
Beginning with either Û0 or Û1, we insert rotations by Δk
about σ̂z after each coin toss rotation R̂ðθ1Þ and R̂ðθ2Þ. In
contrast to the original operations comprising Û0 and Û1,
the rotation angle Δk varies in time. Since a σ̂z rotation is
equivalent to a translation of the underlying Hamiltonian in
quasimomentum space [24], this time-varying rotation
angle implements a digital Bloch oscillation. We choose
Δk to vary in steps of π=10 from 0 to π, traversing the
Brillouin zone exactly once.
Populations resulting from the time-dependent walks

(with the system initialized in a single coherent state) are
shown in Fig. 2(c). Unlike the ballistic dynamics resulting
from the original walks, the Bloch oscillation (traversal of
the Brillouin zone) causes the walker wave function to
refocus [25–28] to both its initial position and spin state.
The intuition underlying this refocusing is that both the
dynamical and Berry phases accumulated by each quasi-
momentum component of the walker is identical upon full

(a)

(b)

(c)

FIG. 2. Quantum-walk protocol and resulting populations. (a) Protocol used to perform the quantum walk, showing cavity state
preparation (blue), quantum walk (green), qubit state measurement (blue), and Q function measurement (pink). The dashed boxes with
σz gates are performed to implement the Bloch oscillation. (b) Cavity Q functions after each step of the quantum walk without Bloch
oscillations, Û0 (top strip) and Û1 (bottom strip). Spin-up (red) and spin-down (blue) Q functions are superimposed. The average
fidelities of the populations compared to theoretical predictions are 0.97 and 0.96 for Û0 and Û1, respectively. (c) Cavity Q functions
after each step of the refocusing quantum walk with Bloch oscillations. The state refocuses after ten steps, as shown in the final frame for
both Û0 and Û1. Refocusing fidelities (to the initial state) for Û0 and Û1 are 0.83 and 0.87, respectively.
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traversal [19,24]. In practice, we observe refocusing fidel-
ities greater than 80%, limited by incomplete adiabaticity
and experimental imperfections.
Having verified the refocusing behavior of the time-

dependent quantum walks, we initialize the cavity-qubit
system in a Schrödinger cat state to measure the accumu-
lated Berry phase [19]. One component of the cat is
precisely the initial state of the previous walks, jβ;↑i.
The other component is j0; fi, where the cavity is in its
ground (vacuum) state and the transmon is in its second
excited state [14], jfi. Shelving the vacuum component of
the cat in the jfi state renders it immune to the coin-toss
rotations, as the jfi ↔ j↓i transition is far detuned
(225 MHz) from the j↑i ↔ j↓i transition. Thus, this
component of the cat lies dormant during the walk, acting
as a phase reference for the observation of the Berry phase.
Our method of preparing the cat, a modification of the
protocol introduced in Ref. [31], is shown in Fig. 4(a). With
the cat initialized, we perform the time-dependent walk
over a full Bloch oscillation, applying the same set of
pulses that resulted in the final frames of Fig. 2(c). After the

walking component of the cat refocuses, we disentangle the
qubit from the cavity with the operation j0; fi → j0;↑i.
This leaves the oscillator in the state

jψi ¼ j0i − eiϕB jβi; ð3Þ

where ϕB is the Berry phase.
While Q tomography lends itself well to measuring

coherent-state occupations, coherences between these states
are largely invisible in this representation. To measure the
Berry phase, we therefore apply direct Wigner tomography
to the final cavity state [19,31,32]. As Figs. 4(b)–4(d) show,
the Wigner functions of two-component cat states display
interference fringes, whose phase directly encodes the

(e)

(c) (d)

(b)

(a)

FIG. 4. Winding number measurement via direct Wigner
tomography of refocused Schrödinger cat states. (a) Protocol
for measuring topology via a time-dependent walk (Bloch
oscillations). The Schrödinger cat state is first prepared (blue),
after which the ten-step refocusing quantum walk is performed
(green). The qubit and cavity state are then disentangled, the qubit
state is purified (blue), and direct Wigner tomography on the
cavity state is performed (pink). Wigner tomography of (b) the cat
undergoing no quantum walk, (c) the cat after undergoing the
trivial Û0 walk, and (d) the cat after undergoing the topological Û1

walk. Fidelities of these resulting cat states compared to pure cat
states are 0.68, 0.69, and 0.67, respectively. (e) A cut of the
Wigner function, showing the fringes that encode the relative
phase between the two cat components for no walk (black), a
trivial walk (red), and a topological walk (blue). The relative phase
corresponds to the phase of the measured interference fringes
following the relation A exp½−2jImðαÞj2� cos½2 ffiffiffī

n
p

ImðαÞ þ ϕ�,
where A, ϕ are the amplitude and phase of the fringes. The
Berry phase—captured by the phase difference between the
topological and the trivial walks—is ϕB ¼ 1.05π � 0.06π in
experiment, consistent with the theoretical expectations of π.

(a) (b)

(c) (d)

FIG. 3. Topological classes of split-step quantum walks.
Calculated band structures, quasienergy ϵ versus quasimomen-
tum k, corresponding to the two walks we perform in the
experiment, Û0 ¼ T̂↑↓R̂ðπ=4ÞT̂↑↓R̂ð3π=4Þ (a) and Û1 ¼
T̂↑↓R̂ð3π=4ÞT̂↑↓R̂ðπ=4Þ (b). Though the energy bands of the
two walks are identical, they are topologically distinct, with
the topology given by the winding of n⃗ðkÞ as k varies through the
Brillouin zone, shown in diagrams (c) and (d). In diagram (c), the
trivial case Û0, n⃗ðkÞ does not complete a full revolution around
the Bloch sphere, while in the topological case Û1 diagram (d), it
does perform a full revolution. This also provides a direct
connection to the Berry phase, as for a spin-1=2 system the
Berry phase is simply half the subtended solid angle of the Bloch
sphere path. A schematic representation of the variation of n⃗ðkÞ is
shown by the ribbons below the Bloch spheres. The arrows on
these strips point in the direction of n⃗ðkÞ. Analogous to the
number of twists in closed ribbons, winding numbers are
quantized and robust to local perturbations.
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relative phase between the dormant (j0; fi) and walking
(jβ;↑i) components of the cat. Figures 4(c) and 4(d) display
the measured Wigner functions for both split-step walks.
In the topologically trivial phase [Fig. 4(c)], the interference
fringes donot acquire any phase shift after thewalk, besides a
small offset due to technical imperfections. For the topo-
logically nontrivial walk [Fig. 4(d)], however, the fringes
visibly shift [Fig. 4(e)], corresponding to an acquired phase
ofϕB ¼ 1.05π � 0.06π. The topologies of the Hamiltonians
that generate the walks are thereby clearly imprinted on the
Wigner functions of the refocused states. A key feature of
such topology is its robustness to all perturbations that do not
close the spectral gap. To this end, we have performed an
additional pair of quantum walks, Û0

0 ¼ ÛWð0.64π; 0.28πÞ
and Û0

1 ¼ ÛWð0.28π; 0.64πÞ, which are continuously
deformable from the original walks. In this case, line cuts
of the two Wigner functions yield an extracted Berry phase
difference of Δϕ ¼ 1.07π � 0.09π [19]. Thus, we have
successfully observed, in a systematic fashion, both phases
in the canonical BDI topological insulator class [4,5].
In conclusion, we have demonstrated a novel quantum-

walk-based simulator capable of emulating topological
phases and directly measuring their associated topological
invariants. These invariants underlie phenomena such as
topologically protected edge states [18], which have been
previously observed with quantum walks. In directly
measuring the associated topological invariants, our work
provides the missing piece of this bulk-edge correspon-
dence for quantum walks.
In addition to the measurement of the topological

invariant, this work also represents the first realization of
a quantum walk in the phase space of a microwave cavity.
This effective simulation of dynamics on a lattice—using
only a single cavity and single qubit—demonstrates that the
large, controllable Hilbert space associated with the cavity
QED system is able to perform quantum simulation
of systems that have traditionally been the purview of
cold atomic systems. Besides simulation, the quantum walk
on a circle, which we have realized here, is also of interest
from the point of view of algorithms [33], with potential
applications in sampling.
Looking towards future work, a direct extension of our

protocol would be to realize multidimensional quantum
walks [17], which have the potential to simulate novel
topological insulators in two and three dimensions (e.g., the
Hopf insulator) [34]. Since our quantum walk happens in
the phase space of a cavity, the effective dimensionality can
be increased simply by coupling the walker qubit to extra
microwave resonators. The advantage of using such a
“synthetic” lattice is that its dimensionality is not limited
by that of the embedding space.
In higher dimensions, various versions of discrete-time

quantum walks have been studied. For instance, it is
possible to realize all known topological classes in two
dimensions using walks with a single two-state walker [17].

A single step of these walks consists of multiple spin-
dependent translation steps in different directions, neces-
sitating the modification in time of the dispersive shifts.
Using the current Bloch-oscillating protocol, the 2D
Brillouin zone can be swept out in stripes, whereby a
measurement of the Berry phase acquired along each stripe
allows the extraction of the Chern number [35].
The generalization of quantum-walk-based protocols to

measurements of many-body topological invariants repre-
sents an exciting frontier at the interface of topology,
interactions, and quantum simulation [36,37].
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