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The topology of a single-particle band structure plays a fundamental role in understanding a multitude of
physical phenomena. Motivated by the connection between quantum walks and such topological band
structures, we demonstrate that a simple time-dependent, Bloch-oscillating quantum walk enables the
direct measurement of topological invariants. We consider two classes of one-dimensional quantum walks
and connect the global phase imprinted on the walker with its refocusing behavior. By disentangling the
dynamical and geometric contributions to this phase, we describe a general strategy to measure the
topological invariant in these quantum walks. As an example, we propose an experimental protocol in a
circuit QED architecture where a superconducting transmon qubit plays the role of the coin, while the
quantum walk takes place in the phase space of a cavity.
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Introduction.—Much like their classical stochastic coun-
terparts, discrete-time quantum walks [1] have stimulated
activity across a broad range of disciplines. In the context of
computation, they provide exponential speedup for certain
oracular problems and represent a universal platform for
quantum information processing [2–4]. Quantum walks
also exhibit features characteristic of a diverse set of
physical phenomena, ranging from localization to molecule
formation [5,6]. At their core, discrete-time quantum walks
(DTQW) are dynamical protocols associated with spinful
particles on a lattice, where the internal spin state controls
the direction of motion [5–19]. Motivated by this intrinsic
spin-orbit coupling, a tremendous body of recent work has
focused on exploring the topological features of DTQWs
both theoretically and experimentally [5,11–15].
A connection between quantum walks and topology has

been made by mapping the unitary evolution of the DTQW
protocol to stroboscopic evolution under an effective
Hamiltonian. In certain cases—distinguished by a combi-
nation of symmetry and dimensionality—the effective
Hamiltonian’s band structure exhibits a quantized invariant,
analogous to those found in topological insulators
[5,11,12,14]. On one hand, these invariants have helped
to enable a sharp classification of noninteracting topologi-
cal phases, which, unlike conventional symmetry-breaking
phases, do not exhibit any local order parameter [20,21].
On the other, they underlie a multitude of exotic physical
phenomena ranging from protected edge modes and quan-
tized conductance to fractional charges and magnetic
monopoles [22,23]. Despite their importance and owing
to their nonlocality, bulk topological invariants have been
directly probed in only a handful of quantum optical
systems [24–27] and a generic blueprint for their meas-
urement remains an outstanding challenge.
In this Letter, we demonstrate that the simulation plat-

form associated with discrete-time quantum walks is

naturally suited for the direct extraction of topological
invariants. We analyze a time-dependent, “Bloch-
oscillating” generalization of two classes (split-step and
single-step) of one-dimensional DTQWs. In these proto-
cols, a geometric signature of the topological invariant is
imprinted as a Berry phase on the quantum state of the
particle. We demonstrate that this phase can be extracted
and disentangled from other contributions via a simple
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FIG. 1. The sequence of unitary operations associated with a
single step of (a) the split-step quantum walk and (b) the Bloch-
oscillating quantum walk. (c) The band structure and spin texture
(arrows accompanying the band) for a trivial split-step quantum
walk [USSð3π=4; π=4Þ] with W ¼ 0 and (d) for a topological
split-step quantum walk [USSðπ=4; 3π=4Þ] with W ¼ 1. (e),
(f) Schematic evolution of the spin eigenvectors in (c),(d) as
one traverses the Brillouin zone. In the topological phase, the spin
texture fully winds around the origin as k varies from ½−π; π�. (g),
(h) Analogous band structures for the trivial and topological
Bloch-oscillating quantum walk. The shift in the effective
momentum induced by the z rotations (by ϕ) are shown explicitly.
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interferometric protocol [28,29]. Our results directly con-
nect to previous seminal observations of the refocusing
behavior of time-dependent quantum walks [30–32] and
provide a physical explanation for such behavior in terms
of dynamical and geometric phases. While our approach is
general, we propose an experimental realization in a circuit
quantum electrodynamics architecture, leveraging the use
of cavity Schrödinger cat states to directly measure the
topological invariant via Wigner tomography.
General approach.—Let us begin by considering the

family of protocols, dubbed split-step quantum walks,
which act on a single spin-1=2 particle (fj↓i; j↑ig) in a
one-dimensional lattice fjxi; x ∈ Zg [5]. Parametrized by
angles θ1 and θ2, these protocols consist of a sequence of
unitary operations [Fig. 1(a)]: (i) a spin rotation Ryðθ1Þ ¼
e−iθ1σy=2, (ii) a spin-dependent translation T↑ ¼ P

x½jxþ
1ihxj ⊗ j↑ih↑j þ jxihxj ⊗ j↓ih↓j�, (iii) a second spin rota-
tion Ryðθ2Þ, and (iv) a second spin-dependent translation
T↓ ¼

P
x½jxihxj⊗ j↑ih↑j þ jx− 1ihxj⊗ j↓ih↓j� [5,12,33].

Denoted USSðθ1; θ2Þ, this sequence comprises a single step
of the quantum walk.
Although the protocol is defined in discrete unitary

steps, the subsequent evolution can be related to that
produced by an effective Hamiltonian,Heff (at stroboscopic
times), where e−iHeff ¼ USSðθ1; θ2Þ. In the quasimomen-
tum basis jki ¼ ð1= ffiffiffiffiffiffi

2π
p ÞPxe

−ikxjxi, the spin-dependent
translation operators are diagonal (T↑ ¼ eik̂ðσz−1Þ=2 and

T↓ ¼ eik̂ðσzþ1Þ=2), and thus,

Heff ¼ ϵθ1;θ2ðk̂Þnθ1;θ2ðk̂Þ · σ; ð1Þ

where k̂ ¼ R
dkjkihkjk; ϵθ1;θ2ðkÞ characterizes the band

structure; and nθ1;θ2ðkÞ specifies the corresponding spinor
eigenstate [Figs. 1(c),(d)].An underlying chiral symmetry of
USS constrains nðk̂Þ to lie on a great circle of the Bloch
sphere [34]. The number of times, W, which nðk̂Þ winds
around the origin as k varies from ½−π; π� defines the
topological invariant of the walk [5,10,13]. Depending on
fθ1; θ2g, the split-step quantum walk mimics motion either
in a trivial band with winding number zero or a topological
band with winding number unity [Figs. 1(e),(f)] [35]. A key
signature of this topological invariant is the geometric Berry
phase, ϕgeo ¼ πW, acquired by the particle’s wave function
upon an adiabatic traversal through the Brillouin zone.
In order to imprint this Berry phase on the wave function

of the quantum walker, we consider a time-dependent
modification to USS, aimed at generating dynamics analo-
gous to solid-state Bloch oscillations [30,31]; the modified
mth step unitary [Fig. 1(b)] is

UðmÞ
SS ðθ1; θ2Þ ¼ T↓Rzð−mϕÞRyðθ2ÞT↑Rzð−mϕÞRyðθ1Þ;

ð2Þ

where Rzð−mϕÞ ¼ eiσzmϕ=2 and ϕ ¼ 2π=N for
N ∈ Z. Since T↑Rzð−mϕÞ ¼ eimϕ=2eiðk̂þmϕÞðσz−1Þ=2 and

T↓Rzð−mϕÞ ¼ e−imϕ=2eiðk̂þmϕÞðσzþ1Þ=2, the additional z
rotations simply shift the original quasimomentum by a
step-dependent amount and result in a modified effective
Hamiltonian,

ĤðmÞ
eff ¼ ϵθ1;θ2ðk̂þmϕÞnθ1;θ2ðk̂þmϕÞ · σ: ð3Þ

In the limit ϕ ≪ 1, this shift defines an adiabatic translation
of momentum space, where the quantum walker traverses
the full Brillouin zone in precisely N steps.
To understand the dynamics of the “Bloch-oscillating”

quantum walk, we map the discrete evolution asso-

ciated with the series of step-dependent unitaries, UðmÞ
SS , to

continuous evolution under a time-dependent Schrödinger
equation: i∂tjψi ¼ Heff(k̂þ ΔkðtÞ)jψi, where Heff(k̂þ
ΔkðtÞ) captures the step-dependent effective Hamiltonian
in Eq. (3) via ΔkðtÞ ¼ ϕ

P
mΘðt −mÞ, where Θ is the

Heaviside step function.
The analogy to Bloch oscillations is best captured by

moving into a nonuniformly accelerating frame via the
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FIG. 2. (a) Refocusing fidelity F ¼ jhψ0jψfij2 computed from
numerical simulations of an N ¼ 30 step Bloch-oscillating
quantum walk as a function of fθ1; θ2g, where ϕ ¼ 2π=N.
Two topologically distinct regions W ¼ 0 (θ1 > θ2) and
W ¼ 1 (θ1 < θ2) are separated by a gapless line. In the vicinity
of this gap closure, the refocusing fidelity drops dramatically
owing to nonadiabatic transitions. The observed stripe pattern in
the refocusing fidelity follows the contour lines for which the
accumulated dynamical phase is a multiple of π. (b)–(d) Three
specific time evolutions associated with various fθ1; θ2g: (b) a
perfectly refocusing walk, (c) a nonrefocusing walk due to
nonadiabatic transitions, and (d) a nonrefocusing walk due to
an accumulated dynamical phase of π=2.
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transformation, UΔkðtÞ ¼ eix̂ΔkðtÞ, wherein the state, j ~ψi ¼
U†

ΔkðtÞjψi satisfies

i∂tj ~ψi ¼
�
Heffðk̂Þ þ x̂ϕ

X
m

δðt −mÞ
�
j ~ψi: ð4Þ

The above time evolution mirrors that of a particle on a
stationary lattice receiving periodic kicks of magnitude ϕ
and the resulting dynamics resemble Bloch oscillations.
To see this, let us consider an initial state j ~ψð0Þi ¼

jki ⊗ jn�
k i, where jnþ

k i and jn−
k i are the spinor eigenstates

(at momentum k) of the upper and lower bands (Fig. 1),
respectively. For ϕ ≪ 1, the adiabatic theorem allows one
to explicitly solve Eq. (4) [33],

j ~ψðtÞi ¼ eiϕdyn;�eiϕgeo;�jkþmϕijn�
kþmϕi: ð5Þ

The momentum and spinor eigenstates simply follow their
adiabats while the overall wave function acquires both a
dynamical and geometric phase,

ϕdyn;� ¼ �
X
m≥0

ϵðkþmϕÞ;

ϕgeo;� ¼ iϕ
X
m≥0

hn�
kþmϕj∂kn�

kþmϕi: ð6Þ

Since jkþ 2πijn�
kþ2πi ¼ jkijn�

k i, j ~ψðmÞi exhibits a recur-
rence to its initial state—up to a global phase—whenever
m=N is an integer [30,31]; this is precisely analogous to
Bloch oscillations, in which Bloch waves recover their
initial momentum upon any full traversal of the Brillouin
zone.
This recurrence forms the basis of our protocol tomeasure

topological invariants in quantum walks. By performing an
interference measurement (e.g., Ramsey spectroscopy)
between the refocused wave function, j ~ψðmÞi, and a
reference state, one can directly extract the overall global
phase ϕT ¼ ϕdyn þ ϕgeo. As will be shown below, it is
possible to disentangle the dynamical and geometric con-
tributions to ϕT by simply varying the overall step number.
In this way, one can extract ϕgeo, thereby directly measuring
the topological winding number.
Although recurrence always occurs for initial momentum

or spinor eigenstates (e.g., j ~ψð0Þi ¼ jki ⊗ jn�
k i), quantum

walks are typically initialized with the particle localized at a
single initial site. As such states consist of superpositions of
eigenstates in both the upper and lower energy bands,

j ~ψð0Þi ¼
X
k

ckjkijnþ
k i þ dkjkijn−

k i; ð7Þ

their refocusing behavior is significantly more subtle,
requiring not only that each constituent eigenstate return
to itself, but also that the total accrued phase is identical for
all components. While the geometric phase acquired afterN
steps is πW for all eigenstates, the dynamical phase acquired

by states in the upper and lower bands are opposite [Eq. (6)].
Thus, the final state will generally not refocus to the initial
state [Fig. 2(a)] and the wave function will remain spread
over a number of sites [Fig. 2(d)].
Fortunately, one can always ensure near-perfect

refocusing (i.e., enforcing a dynamical phase which is
arbitrarily close to a multiple of 2π [36]) by first character-
izing the fidelity as a function of total step number. In
particular, in the limit of large step number, the dynamical
phase becomes proportional to N: ϕdyn ≈ N × ϵ̄, where ϵ̄ ¼R
dkϵðkÞ=2π [37]. The refocusing fidelity, F ¼ jhψ0jψfij2,

is then given by [33]

F ¼ cos2ðNϵ̄Þ; ð8Þ
enabling one to control the refocusing via a choice of
N; this is illustrated by the perfectly refocused state in
Fig. 2(b), where the global phase contains only the geo-
metric component.
In addition to dynamical phase accumulation, nonadia-

batic transitions can also lead to a lack of refocusing. This is
particularly evident near regions where the gap closes as
one transitions from a topological to trivial band structure.
In such cases, even when ϕdyn ∝ 2π [38], the refocusing
fidelity can be imperfect owing to interband Landau-Zener
transitions [Fig. 2(c)].
To quantify this effect, we consider single-step Bloch-

oscillating quantum walks [θ2 ¼ 0 in Eq. (2)]. As shown in
Fig. 3, the effective band structure of the quantum walk
changes as one varies θ1, with the band gap increasing

(a)

(b)

FIG. 3. (a) Nonadiabatic transition probability as a function
of θ1 for the single-step quantum walk (θ2 ¼ 0). Solid lines
correspond to analytic formulas derived in Ref. [31], which
capture the deviations from ideal refocusing behavior. Points
correspond to P↑↓ as computed from Eq. (9), demonstrating that
the physical origin of such deviations is nonadiabatic Landau-
Zener transitions. (b) Schematic band structures for various θ1.
The band gap increases as θ1 varies from 0 to π leading to a
smaller nonadiabatic transition probability.
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continuously as θ1 varies from 0 to π. An enhanced gap
should decrease the nonadiabatic transition probability P↑↓,
which can be explicitly computed for ϕ ≪ 1 as [33]

P↑↓ ≈ ϕ2

����
XN
m¼1

hn−
kþmϕj∂kn

þ
kþmϕie−2i

P
m
p¼0

ϵðkþpϕÞ
����
2

: ð9Þ

One finds thatP↑↓ is in quantitative agreementwith analytics
on single-step Bloch-oscillating quantum walks (Fig. 3)
[30,31,33]. As in the case of dynamical phase accumulation,
one can tune the number of stepsN tominimize nonadiabatic
refocusing errors below any desired threshold.
So far we have shown how to construct a Bloch-

oscillating quantum walk from an arbitrary split- or
single-step quantum walk. By choosing the number of
steps N such that the state of the particle is refocused, one
finds that the final wave function differs from the initial
state by only an imprinted geometric phase, which encodes
the topology of the quantum walk. While global phases are
generally unmeasurable, below we show how this geo-
metric phase can be extracted interferometrically in a
system with an additional internal state.
Experimental realization.—We now propose an exper-

imental blueprint for extracting topological invariants from
Bloch-oscillating quantum walks in a circuit quantum
electrodynamics (cQED) architecture [39]. We consider a
superconducting transmon qubit [40] coupled to a high-
quality-factor electromagnetic cavity [Fig. 4(a)] and envi-
sion the quantumwalk to take place in the phase space of the
cavitymode [41]. Each lattice site corresponds to a particular
coherent state of the cavity and the two logical states of the
transmon (jgi; jei) form the internal spin of the walker [42].
Spin rotations RyðθÞ and RzðϕÞ can be performed using

coherent microwave driving, with state-of-the-art pulse
shaping techniques enabling single-qubit X and Y
Clifford gates with greater than 99.9% fidelity in as little
as 20 ns [43]. Spin-dependent translations arise naturally
from the dispersive coupling between the qubit and the
cavity, Hint ¼ ℏðχ=2Þa†aσz [Fig. 4(b)] [44]. Here, σz is the
Pauli z operator of the transmon qubit, a† (a) the cavity
raising (lowering) operator, and χ the strength of the qubit-
cavity dispersive coupling.
In combination, the above operations enable the realiza-

tion of a quantum walk on a circular lattice in cavity phase
space [Fig. 4(c)]. In particular, one initializes the cavity
in a coherent state jαi, with the qubit in the ground state jgi.
After applying the desired unitary rotation to the qubit, a
waiting period of time t allows the dispersive interaction to
naturally implement the spin-dependent translation. Indeed,
a coherent state jαi in the cavity frame precesses either
clockwise (jαijei → jα exp ðiχt=2Þijei) or counterclock-
wise (jαijgi → jα exp ð−iχt=2Þijgi) depending on the
qubit state [Figs. 4(b), (c)]. Choosing t such that
χt ¼ 2π=L defines the L coherent state “lattice sites”:
fjα exp ði2πl=LÞi;l ∈ ½0; L − 1�g.

These two basic steps (unitary rotation and spin-
dependent translation) can then be repeated to realize a
Bloch-oscillating quantum walk. Measurement of the
quantum walker’s spin and position after each step can be
performed via full tomography of the cavity-qubit
system [45].
To directly probe the topological invariant via the

imprinted geometric phase, one must perform interferom-
etry between the refocused wave function and a reference
state. This is naturally enabled by the proposed cQED
architecture, where one can initialize the system in a cavity
Schrödinger cat state, corresponding to a coherent super-
position, 1=

ffiffiffi
2

p ðjαijgi þ j0ijfiÞ, where j0i is the vacuum
state of the cavity and jfi is the second excited state of the
qubit. Crucially, the j0ijfi state behaves as a phase reference
since it is immune to both the unitary spin rotations and the
dispersive coupling. The jfi state in transmon qubits can
exhibit coherence and decay times in excess of 20 μs [46],
while the aforementioned pulse-shaping techniques result in
off-resonant leakage errors < 10−5.
Upon refocusing of the jαijgi component, the final

wave function takes the form 1=
ffiffiffi
2

p ðeiπW jαijgi þ j0ijfiÞ
and the topological winding number manifests in the
geometric relative phase between the two components.
After disentangling the spin and cavity degrees of

(b)(a)

(d)(c)

FIG. 4. (a) Schematic of the proposed cQED setup for realizing
Bloch-oscillating quantum walks, utilizing a superconducting
cavity mode coupled to a transmon qubit. The levels jgi; jei form
the internal spin states of the walker, while jfi is used as a
shelving state. (b) The qubit and cavity couple dispersively,
realizing a state-dependent shift of the bare cavity transition
frequency ωc that naturally enables spin-dependent translations.
(c) The quantum walk takes place on a circular lattice in the phase
space of the cavity. Each coherent state depicted in the figure
represents a particular lattice site of the walk. Spin-down (-up)
corresponds to state jgi (jei). (d) Wigner tomography WðαÞ of
the cavity following a refocused Bloch-oscillating quantum walk
in the topological and trivial band structures reveals the under-
lying winding number in the phase of the interference fringes.
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freedom via number-selective qubit pulses (i.e., j0ijfi →
j0ijgi) [47], one can perform full Wigner tomography of
the cavity state. As illustrated in Fig. 4(d), the resulting
interference patterns display fringes whose phase corre-
sponds to πW [45,48].
In summary, we have demonstrated that the simulation

platform associated with quantum walks can enable the
direct measurement of bulk topological invariants. In
particular, by constructing Bloch-oscillating analogues of
both split- and single-step quantum walks, we have
introduced an interferometric protocol to directly measure
the winding number associated with a quantum walk’s
effective band structure. A key feature of such Bloch-
oscillating quantum walks is their natural refocusing
behavior, whose microscopic origin arises from an inter-
play between dynamical and geometric phases as well as
non-adiabatic transitions. Looking forward, our results can
be directly extended to measurements of quantum walk
topological invariants in higher dimensions, and provide a
bridge toward probing many-body invariants associated
with interacting quantum walks.
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