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We present evidence of a direct, continuous quantum phase transition between a Bose superfluid and the
ν ¼ 1=2 fractional Chern insulator in a microscopic lattice model. In the process, we develop a detailed
field theoretic description of this transition in terms of the low energy vortex dynamics. The theory
explicitly accounts for the structure of lattice symmetries and predicts a Landau forbidden transition that is
protected by inversion. That the transition is continuous enables the quasiadiabatic preparation of the
fractional Chern insulator in nonequilibrium, quantum optical systems.
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The canonical examples of topological order are pro-
vided by the fractional quantum Hall states, conventionally
found in two-dimensional electron gases [1,2]. Their lattice
cousins, the fractional Chern insulators (FCIs), naturally
arise when strongly interacting particles inhabit flat,
topological band structures [3–17]. Effective microscopic
Hamiltonians whose ground states realize such phases
have been numerically identified in synthetic quantum
systems, ranging from ultracold gases in optical lattices to
ensembles of solid-state defects [18–20]. On the exper-
imental front, Aidelsburger et al. [21] have recently
loaded 87Rb into the topological, nearly-flat band of a
Hofstadter model.
Unlike typical condensed matter systems, quantum

optical proposals for topological phases represent driven,
nonequilibrium implementations in an effective Hamiltonian
picture. Thus, even if an appropriate Hamiltonian can be
realized, guiding the system to its ground state is still a major
challenge.Often, one cannot simply “cool” by decreasing the
temperature of a surrounding bath. One approach to this
problem is provided by quasiadiabatic preparation, wherein
the correlated ground state is reached from a simple initial
state by slowly tuning the Hamiltonian parameters. In the
case of FCIs, natural starting states include superfluids (SFs)
and charge-density wave (CDW) insulators, as these often
arise in close proximity to the FCI state of interest
(Fig. 1, [18,20]).
Quasiadiabatic preparation requires that any quantum

phase transition between the initial and final state be
continuous. A system tuned through a first order transition
would need to be ramped exponentially slowly in system
size to avoid being stuck in a metastable high energy state
[22,23]. On the other hand, continuous quantum phase
transitions allow for two possibilities: (1) strictly adiabatic
preparation with ramp time scaling as a power law in
system size [24–26] or (2) quasiadiabatic preparation with a
final state energy density scaling as an inverse power law

with the ramp time [27–29]. Unfortunately, there is
relatively little known regarding quantum phase transitions
between conventional and fractional phases as such tran-
sitions lie beyond the Ginzburg-Landau paradigm [30].
Field theories of possible critical points between

Laughlin fractional quantum Hall states and Mott insulators
were studied in Refs. [31–33]. Meanwhile, a theory of a
superfluid to bosonic ν ¼ 1=2 Laughlin state was recently
constructed in Ref. [34]. All of these theories assume that
any additional lattice symmetries are preserved throughout
the phase diagram. They require the bosons to be at integer
filling and cannot describe CDW order. Moreover, to date,
none of these continuous transitions has been established in
any microscopic model, as second order phase transitions

(a) (b)

FIG. 1 (color online). (a) Two parameter phase diagram of the
driven NV model as determined by exact diagonalization of
Eq. (2). (b) Phase diagram in the presence of microscopic
inversion symmetry breaking parameter g ¼ 0.2. The ðπ; πÞ
CDW insulator extends in two fingers which split the
SF↔FCI transition, showing that the underlying transition at
g ¼ 0 is continuous and protected by inversion symmetry.
Spectra and structure factors collected on coarse grey grid sites;
full diagnostics (see text) calculated on 1D (red) cuts at a refined
spacing of 0.01. Markers with error bars indicate regions where
diagnostics were ambiguous. Markers without error bars indicate
ambiguous regions narrower than marker size.
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are difficult to characterize in the small systems amenable
to numerical study.
In this Letter, we report two main advances. First, we

establish the presence of a direct continuous transition
between a superfluid and a ν ¼ 1=2 FCI state in a micro-
scopic model of interacting spins. We do this by showing
that the direct superfluid-FCI transition splits into two
transitions when we perturbatively break inversion sym-
metry. Since first order phase transitions are insensitive to
perturbations, the splitting of the transition implies that it
must be continuous. This qualitative signature avoids the
usual difficulty associated with finite-size scaling in small
systems. Second, we develop a detailed field theoretic
description of this transition in terms of the low-energy
vortex fields. This description naturally accommodates
the spontaneous breaking of lattice symmetry in the
Mott-insulating CDW state at half-filling.
Microscopic model.—We study the microscopic phase

diagram of a two-dimensional square lattice of nitrogen-
vacancy (NV) defects in diamond [35–37]. Our model is
closely related to previous proposals for realizing FCI states
in ultracold polar molecules [18]. We will briefly sketch the
main ingredients below (for details see the Supplemental
Material [38] and Ref. [20]). Each NV constitutes a spin
one (S ¼ 1) electronic degree of freedom and interactions
occur via the magnetic dipole-dipole interaction,

Hdd ¼
1

2

X

i≠j

κ

R3
ij
½Si · Sj − 3ðSi · R̂ijÞðSj · R̂ijÞ�; ð1Þ

where, κ ¼ μ0=ð4πÞ and Rij connects sites i and j [36].
Hyperfine interactions between the NV electronic spin

and the nitrogen nuclear spin (assuming isotope 15N), lead
to 6 states on each site, indexed jSz; Izi, where Sz ¼ �1; 0,
Iz ¼ �1=2. Taking into account the zero-field splitting as
well as an applied magnetic field, it is possible to arrange
for the low-energy manifold on each site to contain only 4
states, namely, the Sz ¼ 0;þ1 states. By applying suitable
optical dressing, the effective dynamics can be further
restricted to a two-level system, with local dark states
j0i ¼ βj1;− 1

2
i − αj0; 1

2
i, and j1i ¼ sj0;− 1

2
i þ vj1; 1

2
iþ

wðαj1;− 1
2
i þ βj0; 1

2
iÞ. The coefficients α, β are fixed by

the hyperfine interaction and applied static fields while the
coefficients s; v; w are tunable via dressing to the electronic
excited state A2 [39]. In the rotating frame, the states j0i
and j1i are split by an energy Δ, which is of order the
hyperfine coupling [20,38].
The characteristic magnetic dipolar interaction strength,

κ=R3
0 is typically much weaker than Δ, assuming R0, the

nearest-neighbor lattice spacing, is ≳10 nm. Thus, while
the dipolar interaction can “flip-flop” j10i↔j01i between
sites resonantly, processes which change the total number
of 1 sites are energetically suppressed. This emergent
conservation law allows us to consider the system in terms
of conserved hardcore bosonic operators, a†i ¼ j1ih0ji,
described by the Hamiltonian

HB ¼ −
X

ij

tija
†
i aj þ

1

2

X

i≠j
Vijninj; ð2Þ

where tij ¼ −h1i0jjHddj0i1ji and Vij ¼ h1i1jjHddj1i1jiþ
h0i0jjHddj0i0ji − h1i0jjHddj1i0ji − h0i1jjHddj0i1ji. In
addition to boson number conservation, HB is symmetric
under lattice translations and spatial inversion, but not
generically under any further lattice rotations unless the NV
axis is perpendicular to the lattice plane. We note that the
elliptical polarization of the optical dressing fields directly
breaks time-reversal symmetry [18,38].
An FCI can be realized in this system with two main

kinetic ingredients: the single boson bands ought to be
“flat,” such that their dispersion is small relative to the
interactions, and they ought to carry a nontrivial Chern
number. Such topological flat bands may be achieved by
using different optical dressing parameters on the a and b
sites of a two-site unit cell (green and blue, inset, Fig. 2);
this amounts to defining the hardcore boson slightly
differently on the a and b sublattices [16].
We now consider the many-body phases which arise at

filling fraction ν ¼ 1=2 per unit cell, i.e., 1=4 particle per
site, in a topological flat band regime. The phase diagram
depicted in Fig. 1(a) is calculated using exact diagonaliza-
tion for sizes up to Nsites ¼ 36; Nparticles ¼ 9. Two micro-
scopic parameters are varied:Φ0 is the azimuthal angle of the
NVaxis relative to the lattice plane and θa is a microscopic
dressing parameter. Roughly speaking, θa controls the
magnitude of the effective interaction Vij (with θa → 0
giving the strongest interactions), while Φ0 controls the
amount of band dispersion. These qualitative differences in
the microscopics yield a rich phase diagram exhibiting both
conventional and topological phases [Fig. 1(a)].
A ν ¼ 1=2 bosonic Laughlin FCI arises where the

dispersion is flattest and the dipolar tail of the interaction
is weak. Turning up the interactions by varying θa causes the
system to spontaneously break the lattice translational
symmetry and form a commensurate CDW insulator at
momentum ðπ; πÞ. Tuning away from the flat band regime
by adjustingΦ0 leads to a phase transition into a superfluid,
consistent with the microscopics being dominated by band
dispersion. We identify these phases numerically with five
diagnostics: (i) ground-state degeneracy, (ii) spectral flow
under magnetic flux insertion (superfluid response),
(iii) real-space structure factor hnðRÞnð0Þi, (iv) the many-
body Berry curvature σxy ¼ ð1=2πÞ∬Fðθx; θyÞdθxdθy with
Fðθx;θyÞ ¼ Im½hð∂Ψ=∂θyÞjð∂Ψ=∂θxÞi− hð∂Ψ=∂θxÞjð∂Ψ=
∂θyÞi� [40], and (v) (for the FCI), Laughlin quasihole
counting [11,38].
The above diagnostics unambiguously determine the

phases deep within each phase. The phase boundaries
sketched in Fig. 1(a) correspond to the regions where the
diagnostics become ambiguous due to the finite size cross-
overs. The error bars in the phase diagram indicate thewidth
of the crossover region as observed in the five diagnostics.
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Whether the transition is continuous or first order is
hard to extract directly by conventional methods from such
small size numerics. So we use a trick: the known critical
theories describing the direct SF↔FCI transition require a
discrete symmetry, such as inversion, to protect them. Thus,
if breaking inversion perturbatively in the microscopic
model introduces a Mott insulator between the SF and
FCI phases we can conclude that the underlying transition
was continuous.
To test this, we introduce a weak staggering g to

the horizontal nearest neighbor hopping, ti;iþx̂ →
ð1þ gÞsi ti;iþx̂, where si is 0 (1) on the a (b) sublattice.
We have investigated the phase diagram with g ¼ 0.2;
0.3; 0.4; the phase diagram with g ¼ 0.2 is shown in
Fig. 1(b) using the same numerical diagnostics as before
(Fig. 2) [38]. The introduction of staggering indeed
splits the FCI to SF transition revealing an intermediate
CDW insulator. We view this as strong evidence that the
transition at g ¼ 0 is continuous and described by the field
theory we develop below.
Field theory.—In order to capture the phase transitions

seen in Fig. 1, any long-wavelength description must be
able to simultaneously accommodate a ν ¼ 1=2 Laughlin
state, the superfluid, and the spontaneous breaking of lattice
symmetry in the CDW insulator. Previous work [34]
considered the case where the Mott insulator is at integer
filling and thus need not break translational symmetry.

Here, we will present an alternate theory for bosons at half-
integer filling, which takes into account the fact that the
CDW insulator must spontaneously break lattice symmetry
[41,42]. En passant, our new theory provides a physical
representation of the transition which emphasizes the role
of vortex dynamics.
We begin by briefly reviewing the effect of half-filling on

the vortices of a superfluid state on a rectangular lattice
[43,44]. The vortices see the original particles as magnetic
flux quanta [45,46] and thus, on average, feel half a flux
quantum per plaquette (of the dual lattice). This requires
the translational symmetries of the vortex theory to be
augmented by a gauge transformation. The resulting Tx
and Ty operators satisfy the “magnetic” translation algebra
TxTy ¼ −TyTx. The vortex band structure must have an
even number of minima, protected by this translation
algebra. If these minima are not at inversion symmetric
points in the magnetic Brillouin zone, then inversion
symmetry I requires that the number of minima be a
multiple of 4 [Fig. 3(a)].
In the minimal case there are four such minima at

momenta �k0;�k0 þ ð0; πÞ (in Landau gauge). A soft-
mode expansion of the vortex field near these minima leads
to four flavors of vortices which we label ϕv

lα for l ¼ 0; 1
and α ¼ ↑;↓, as in Fig. 3(a). The symmetry operators act as
follows:

I∶ ϕv → τxϕ
v;

Tx∶ ϕv → eik0·x̂τ
z
σxϕv;

Ty∶ ϕv → eik0·ŷτ
z
σzϕv; ð3Þ

FIG. 2 (color online). Numerical diagnostics on a cut of
the phase diagram at θa ¼ 0.75 calculated at Nsites ¼ 32,
Nparticles ¼ 8. (a) Berry curvature σxy averaged over the boundary
condition torus for g ¼ 0. In the SF, σxy is not quantized, while in
the FCI, it is precisely −0.5. (b) Analogous with inversion broken
g ¼ 0.2. The intervening CDWexhibits σxy ¼ 0. (c) Fluctuations
of the Berry curvature sampled on a 10 × 10 grid in the boundary
condition torus. Notice that fluctuations are heavily suppressed in
the insulating phases while the gaplessness of the SF causes a
large variance. (d) Real space structure factor at k ¼ ðπ; πÞ. Both
the SF and FCI are translation invariant while the CDW exhibits
strong ordering. (inset) The two-site unit cell square lattice and its
primitive vectors.

FIG. 3 (color online). (a) Magnetic Brillouin zone for vortex
fields ϕv

lα in the Landau gauge. Circles indicate dispersive
minima and where the slow vortex fields are defined. (b) Two
parameter phase diagram of theory defined by Eq. (4) without
inversion breaking. Slice in r and v1 holding v2 < v3 < 0,
w2 < 0 and w1; v3; w3 > 0 and u > 0 large enough to stabilize
the potential, yields an inversion breaking CDW with ðπ; πÞ
ordering and a superfluid with ðπ; πÞ current order. (c) Same
phase diagram with g ≠ 0 breaking inversion.
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where the τ (σ) Pauli matrices act on the α (l) index and k0
is the momentum of the 0↑ field.
In the superfluid state, all of these vortices are uncon-

densed. When any combination of them condenses, the
superfluid order is destroyed and the translation symmetry
is broken, leading to insulating density wave states [38,43].
Remarkably, the ν ¼ 1=2 Laughlin state arises when the
vortices form an integer quantum Hall state [47–51]. This
motivates the following field theory which can interpolate
between the FCI, superfluid, and CDW states:

L ¼ 1

2π
Ae∂aþ 1

2π
b↑∂b↓ − 1

2π
a∂ðb↑ þ b↓Þ

þ
X

l

jð∂ − ibτxÞϕlj2 − VðfϕlgÞ; ð4Þ

where the notation a∂b≡ ϵμνλaμ∂νbλ. Here, a and bα are
internal Uð1Þ gauge fields minimally coupled to the
complex scalar fields ϕlα; Ae represents a background
external gauge field used to probe the underlying boson
current jμ ¼ 1=2πϵμνλ∂νaλ. The Chern-Simons terms bind
a flux quantum of b↑=↓ to ϕl↓=↑. These flux-ϕlα composites
represent the original vortex fields ϕv

lα. Under the action of
the lattice symmetries, ϕl can be taken to transform as ϕv

l in
Eq. (3), while the gauge fields b are invariant under Tx; Ty
and swap under I.
The potential term V ¼ rϕ†ϕþ V4 þ � � � includes all

other terms compatible with the physical and gauge
symmetries. At quartic order, there are seven couplings,

V4¼uðϕ†ϕÞ2þv1
X

l

jϕl↑ϕl↓j2þv2
X

α

jϕ0αϕ1αj2

þv3ðjϕ0↓ϕ1↑j2þjϕ1↓ϕ0↑j2Þþw1

X

α

ϕ�2
0αϕ1α

þw2ϕ
�
0↑ϕ1↑ϕ

�
0↓ϕ1↓þw3ϕ

�
0↑ϕ1↑ϕ

�
1↓ϕ0↓þc:c: ð5Þ

This theory, Eqs. (4) and (5), is one of the central results of
the Letter. It is capable of describing all three phases found
in the microscopic model: (1) When ϕlα are uncondensed
(hϕlαi ¼ 0) they can be integrated out, yielding the effec-
tive theory of the ν ¼ 1=2 Laughlin state [30]. (2) If one of
the ϕlα condenses, bα is gapped by the Anderson-Higgs
mechanism; the resulting theory describes a Mott insulator
which, as shown below, breaks translation symmetry. (3) If
both bα gauge fields are Higgsed, the resulting theory
L ¼ 1=ð2πÞAe∂aþ ð∂aÞ2 þ � � � is the usual dual descrip-
tion of a superfluid.
The pattern of inversion and translation symmetry

breaking in these phases follows from the behavior of
the simplest gauge-invariant bilinears in the ϕ fields:

Oα
0;0 ≡ ϕ†

αϕα Oα
π;0 ≡ ϕ†

ασzϕα;

Oα
0;π ≡ ϕ†

ασxϕα Oα
π;π ≡ ϕ†

ασyϕα: ð6Þ

The operators Oα
kx;ky

carry momentum ðkx; kyÞ. The linear

combination O�
kx;ky

≡O↑
kx;ky �O↓

kx;ky
is inversion even

(odd). Depending on which O�
kx;ky

acquire expectation
values, we can determine how translation and inversion
are broken [52].
Figure 3(b) shows a particular two-parameter slice of

the mean-field phase diagram of Eq. (4) which shows
direct continuous transitions between the FCI↔SF and
FCI↔CDW phases, along with a continuous triple point
terminating the first order line separating the SF↔CDW
phases. The CDW order is at momentum ðπ; πÞ, as seen in
the numerics, while the superfluid has ðπ; πÞ current order.
The leading inversion breaking potential, V ¼ gϕ†τzϕ,
splits the direct FCI↔SF transition by an intervening
CDW with width proportional to g as in Fig. 3(c). The
topology of these phase diagrams matches that observed
numerically in Fig. 1.
Similar phase diagrams arise in other regions of the

coupling space; in all cases, the insulators exhibit com-
mensurate density order and the SF breaks a lattice
symmetry. Likewise, a superfluid living in a band structure
with noninversion symmetric minima will either condense
into a standing wave or break inversion. The microscopic
dispersion from Eq. (2) indeed exhibits noninversion
symmetric minima, but the small accessible system sizes
prevent us from verifying the symmetry breaking pattern
in the SF.
In summary, we have constructed a critical field theory

that describes transitions between FCI↔CDW↔SF,
accommodating both spontaneous symmetry breaking
and topological order. Surprisingly, this theory is realized
in a microscopic model of coupled electronic and nuclear
spins as arise in an engineered lattice of NV defects. While
our microscopic study has focused on NVs, the universal
physics predicted by the field theory should be applicable
to phase transitions in ultracold atomic systems [21], polar
molecules [16,18], and Rydberg ensembles [53,54]. In such
systems, we predict that the quasiadiabatic preparation of a
fractional state can occur with energy density

ϵ ∼ τ−
3ν
νþ1 ð7Þ

where τ is the ramp time and ν is the correlation length
exponent of the field theory [27–29]. We leave the precise
calculation of ν to future work, but note that in the absence
of gauge fluctuations, ν ≈ 0.7 [55] as for a two-component
XY transition. For small finite size systems, we also expect
the gap to close as ∼1=L since the dynamical critical
exponent is z ¼ 1. This opens the door to preparing
fractionalized states in near term quantum optical
simulators.
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