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We propose and analyze a new approach to the coherent control and manipulation of quantum
degrees of freedom in disordered, interacting systems in the many-body localized phase. Our ap-
proach leverages a number of unique features of many-body localization: a lack of thermalization,
a locally gapped spectrum, and slow dephasing. Using the technique of quantum phase estimation,
we demonstrate a protocol that enables the local preparation of a many-body system into an ef-
fective eigenstate. This leads to the ability to encode information and control interactions without
full microscopic knowledge of the underlying Hamiltonian. Finally, we analyze the effects of weak
coupling to an external bath and provide an estimate for the fidelity of our protocol.
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The coherent control and manipulation of a complex
quantum system is one of the central challenges of mod-
ern physics. The majority of ongoing research focuses
on building up this complexity starting from individual,
isolated qubits [1–7]. In contrast, the opposite approach,
where one seeks the coherent manipulation of a strongly
interacting system, especially subject to disorder, is gen-
erally thought to be intractable. The main difficulty
is the exponentially growing Hilbert space with a typ-
ical many-body eigenstate strongly coupled to a dense
set of other states. Even when the structure of relevant
eigenstates is known, their many-body character gener-
ally makes them difficult to manipulate using most ex-
perimental controls.

In this Letter, we explore an alternate approach to-
ward the coherent control of many-body systems. Our
approach follows a new paradigm introduced by recent
studies of many-body localization (MBL) [8–33]. In the
presence of strong disorder, the many-body eigenstates of
an isolated, interacting system can be localized in Fock
space [13]. These MBL eigenstates exhibit a discrete lo-
cal spectral response, suggesting that one can coherently
manipulate and store quantum information (using exter-
nal controls with both finite spatial and spectral resolu-
tion) [21, 22, 24]. This is remarkable because it implies
that, in the presence of sufficiently strong disorder, local
quantum bits naturally emerge from a strongly interact-
ing many-body system [22, 25].

Further, in the MBL phase, these emergent qubits in-
teract with one another via diagonal (i.e., dephasing)
interactions; for two qubits separated by a distance d,
this interaction time scales as ∼ τ exp(d/ξ), where τ is
a characteristic timescale and ξ is the localization length
[16, 20]. In this respect, the MBL phase differs crucially
from, e.g., a conventional Anderson insulator, in which
such interactions are absent [8, 14, 34]. This weak inter-
action brings about two implications for quantum con-
trol: (i) the coherence time of a single MBL qubit can
be extremely long and (ii) dephasing can be leveraged
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FIG. 1. (a) Schematic energy spectrum of the disordered
spin-1 model. (b) A discrete local spectrum with excitations
exhibiting different localization lengths. (c) External elec-
tromagnetic driving (yellow beam) defines the location of an
MBL qubit.

as a way to coherently couple spatially separated MBL
qubits [16]. Unfortunately, in general, the parametric
dependence of both the coherence and dephasing times
are identical. To make use of many-body localization
as a platform for quantum control, one must devise a
method to implement interactions (e.g. two-qubit quan-
tum gates) on much shorter timescales than the decoher-
ence.

Our approach relies upon three key ingredients. First,
the local spectral gap of the MBL phase enables one to
encode and manipulate quantum information using con-
trols of both finite spatial and spectral resolution. Sec-
ond, we demonstrate the ability to enhance interactions
between MBL qubits by exploiting variations in the local-
ization length of different eigenstates. Finally, we utilize
quantum phase estimation and projective measurements
to locally prepare the system in a many-body eigenstate
ensuring that the interactions between spatially sepa-
rated MBL qubits is coherent. In contrast to previous
work [28], our approach uses the intrinsic dephasing in-
teractions of the MBL phase as a resource to purify the
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system. The combination of these ingredients can in prin-
ciple, form the basis for a many-body localized quantum
information processor. We find that such an approach
can achieve a fidelity that asymptotically approaches the
conventional method using isolated qubits. Perhaps more
significantly, the local encoding of information provides
new routes for studying and quantifying dynamics in the
MBL phase. For example, one can imagine directly prob-
ing the decay of both the classical and quantum informa-
tion, extracting the characteristic decay length for each
[35], thereby gaining new insights into the nature of MBL
systems.

Spin-1 model—To illustrate the key idea of our ap-
proach, we start with a simple model Hamiltonian that
clearly exhibits two separate localization lengths. We
will utilize excitations with a short localization length
(“qubit” excitation) to encode information; meanwhile,
to implement gates, we envision off-resonantly coupling
such qubit excitations to a more delocalized excitation
(“bus” excitation), thereby enhancing interactions on de-
mand [4, 36].

Consider a chain of spin-1 particles with Hamiltonian,

H =

N∑

i=1

hiS
z
i + ∆i (Szi )

2
+ 2t~Si · ~Si+1 (1)

where N is the total number of sites (Fig. 1a). Disorder
exists in both the magnetic field strength hi and the sin-
gle spin anisotropy ∆i, which are randomly drawn from
uniform distributions [h0−h, h0+h] and [∆0−∆,∆0+∆],
respectively. As the Hamiltonian conserves total z-
magnetization,

∑
i S

z
i , we can define a logical ground

state |G〉 as the eigenstate with all spins in |Szi = −1〉.
We focus on the regime in which the field disorder is much
weaker than the anisotropy disorder, with a hierarchy,

t� h∆0/∆� ∆� ∆0 . h0. (2)

In this limit, there are two types of well-defined single-
particle excitations. The first (qubit-type) consists of a
single spin flipped into the |Szi = 0〉 state. This excitation
moves in a disorder potential of strength ∆, analogous
to Anderson localization [8]. As such, all single-particle
states are localized and in the limit t � ∆, the typi-
cal localization length of an excitation is given by ξ−11 ∼
log ∆/t. The second single-particle excitation (bus-type)
consists of a single spin flipped into the |Szi = +1〉 state;
it can be regarded as a bound state of two qubit-type
excitations, with binding energy ∼ ∆0 (Fig. 1a). A bus
excitation propagates via a second-order hopping pro-
cess of amplitude ∼ t2/(2∆0). It, too, can be regarded
as a localized single-particle excitation, with localization
length, ξ−12 ∼ log (h∆0/t

2) = ξ−11 − log [t∆/(h∆0)]. Un-
der the hierarchy of equation (2), ξ2 � ξ1 (Fig. 1b).

We now turn to the case of multiple excitations. For
sufficiently small t or sufficiently low energy densities,

the many-body eigenstates of this system are expected
to exhibit many-body localization. The effective inter-
action between two excitations in the MBL phase falls
off exponentially with distance; in the limit of low en-
ergy density, it is simply given by the overlap of their
wavefunctions. Thus, for two qubit-type excitations a
distance d from one another, the interaction strength is

δI ∼ t exp(−d/ξ1), (3)

while for two bus-type excitations, the interactions scale
as ∼ t exp(−d/ξ2).
Single qubit encoding and manipulation—In order to

encode Nq qubits, we partition a given disordered sys-
tem of size L into Nq = L/d smaller segments of length
d > ξ2 � ξ1. We select a single qubit-type excitation
centered near the middle of each segment, and use it to
encode the state of the MBL qubit (Fig. 1c). An arbi-
trary superposition of qubit states will dephase on a time
scale 1/δI , and all gate operations must be fast compared
to this timescale [16, 20].

The coherent manipulation of a single qubit state is
feasible with local external control of finite spatial ` and
spectral δω resolution [24]. After initializing the sys-
tem to the logical ground state |G〉, one applies a time-
dependent electromagnetic field of frequency ω (Fig. 1c);
to within exponentially small corrections, this transverse
field couples |G〉 with only a finite number ∼ max(`, ξ1)
of localized eigenstates, as depicted in Fig. 1b.

Thus, one can induce a high-fidelity transition between
|G〉 and a specific eigenstate by weakly driving the sys-
tem with ω tuned to the particular many-body transition
ωL. The requirements for the spatial and spectral reso-
lution are: (i) ` < d and (ii) δω < ∆/max(`, ξ1). In
this encoding scheme, information readout is performed
by directly measuring the local spin polarization. In the
limit ξ1 → a, this corresponds to the measurement of a
single spin. When ξ1 > a, the total polarization in the
region determines the qubit state.

Two-qubit gates—To perform universal quantum con-
trol, we only need to demonstrate a controlled phase gate.
As previously mentioned, such a gate can in principle,
be achieved via the dephasing interactions of Eq. (3).
However, since decoherence occurs at the same rate, one
must effectively enhance this interaction strength. Since
the dephasing between bus excitations occurs at a much
faster rate te−d/ξ2 , the effective interaction strength can
be enhanced by several orders of magnitude upon dress-
ing [37] a qubit-type excitation with a bus-type excita-
tion. This enhancement ratio is given by,

δdrivenI

δI
∼ |Ω|

2

|δ|2 e
d
(

1
ξ1− 1

ξ2

)
(4)

where Ω is the Rabi frequency and δ is the detuning of the
external driving field. A numerical demonstration of this
enhancement in the simplified spin-1 model is provided
in the Supplemental Material [38].
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FIG. 2. Numerical study of localization lengths in the low spin
density, weakly localized regime of Eq. (6). (a) Histogram
of localization lengths in units of lattice spacing. Since the
model conserves total Sz, one can choose to work in manifolds
with a fixed density of excitations. Here, we consider two spin-
flips. (b) Decay of the interaction strength as a function of
distance for both qubit and bus excitations.

Generic MBL system—We now generalize our protocol
from the spin-1 model to any MBL system with a fully
localized spectrum [8–27]. Such systems can be repre-
sented in terms of conserved local spin-1/2 degrees of
freedom termed “l-bits” [16, 20]:

Hmbl =
∑

i

h̄iτ
z
i +

∑

i,j

J̄ijτ
z
i τ

z
j +

∑

i,j,k

K̄ijkτ
z
i τ

z
j τ

z
k · · · (5)

where the τi are spin-1/2 operators describing localized
excitations of size ξ̃, h̄i is the energy of each excitation,
J̄ij is the two-body interaction shift, etc. An l-bit over-

laps with ∼ ξ̃ microscopic degrees of freedom, and can
therefore be individually addressed (up to exponentially
small infidelities) using a drive with spectral resolution

greater than t/2ξ̃. In addition, the l-bits have effective
diagonal interactions that also fall off exponentially, with
a localization length ξ that varies from site to site and
(unlike the l-bit size ξ̃) from eigenstate to eigenstate [20].
All of the qualitative arguments from the spin-1 model
extend to the generic case, provided (a) there are excita-
tions that overlap spatially but have different localization
lengths ξ, and (b) one can initially prepare the system in
a particular eigenstate.

To understand the first of these issues, we numerically
study the variation of localization lengths for the Hamil-
tonian,

H =
∑

i

2t~Si · ~Si+1 + hiS
z
i (6)

where hi is randomly drawn from a uniform distribution
[−∆,∆]. This model is “generic” in that we have not
engineered its localization lengths to have any particu-
lar features. In Fig. 2a, the histogram of localization
lengths ξ is shown for low excitation density (up to two
spin-flips) with weak disorder ∆/t = 3 [38]. The distri-
bution exhibits heavy tails, evincing the fact that there

is significant probability to find ξ longer than its average
value. It turns out that variations always exist (even at
high excitation densities) and are largest near the local-
ization transition (see [38] for a quantitative analysis).

We note that our protocol does not require a para-
metric separation between long and short localization
lengths; rather, one can optimize d to achieve as large
an interaction enhancement as desired. To quantify the
enhancement of the interaction strength, we numerically
extract the localization length of typical qubit and bus
excitations. We diagonalize systems up to length L = 50
with at most two excitations and perform 100 disorder
averages. For each disorder realization, we apriori choose
approximate positions for the left and right MBL qubits
(at L and R). Starting from the polarized state |G〉,
we identify computational qubits with significant local
support around L,R. These basis states are chosen as
energy eigenstates that have significant overlap with local
excitation operators ΣL(R) = SxL(R)−1 +SxL(R) +SxL(R)+1.

In particular, we select states (φL, φR, φLR), such
that |〈φL|ΣL|G〉|2, |〈φR|ΣR|G〉|2, |〈φLR|ΣLΣR|G〉| >
10−2; moreover, to ensure that the MBL
qubits are self-consistently defined, we require
|〈φLR|ΣL|φR〉|, |〈φLR|ΣR|φL〉| > 10−2.

This enables us to directly estimate the effective inter-
action between the MBL qubits from energy eigenvalues,
with δI ≡ ELR−EL−ER +EG. As the qubit(bus)-type
excitation, we select basis states, (φL, φR, φLR) that ex-
hibit the smallest(largest) interaction strength [38]. As
depicted in Fig. 2b, bus-type excitations interact signif-
icantly more strongly than qubit-type excitations, en-
abling multiple quantum gates to be performed within
a decoherence window. While this simplified simulation
does not account for the dynamical “dressing” of the
qubits, the nature of the qualitative enhancement is the
same: it comes from intrinsic variations of the many-
body localization length (see [38] for full numerical sim-
ulations).

Initial state preparation—To enable fully coherent evo-
lution, the interactions between MBL qubits must be co-
herent. This is indeed the case when the system is pre-
pared in a fiducial many-body eigenstate; however, such
a preparation is very difficult for a generic (high tempera-
ture) system. Since the MBL phase has a simple descrip-
tion in terms of local conserved quantities, each many-
body eigenstate can be labeled by specifying the values
(±1) of all τ spins. The question is then: how can one effi-
ciently prepare the system into a desired τ -spin superpo-
sition, starting from an arbitrary many-body state, with
only local control over small sub-regions A and B. Let us
label the two excitations L and R (in each region) to be
our MBL qubits. The effective interaction between these
qubits takes the form δI = JLR+

∑
k/∈{A,B}KLkRτk+ . . .

for each τ -spin configuration [20]. Thus, starting from a
generic many-body state, the effective interaction varies
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from eigenstate to eigenstate and cannot enable a coher-
ent quantum gate.

Interestingly, the interaction itself can be used as a
resource to purify the entire system of τ -spins; in par-
ticular, by observing the interaction strength between
the MBL qubits, one can effectively perform a quantum
non-demolition measurement of the τ -spin configuration.
Such an observation can be done via a modified spin-echo
protocol [34], which projects the τ spins onto a set of con-
figurations that have the same δI , up to the precision of
the measurement.

Specifically, using an adaptive phase estimation algo-
rithm [2, 28, 39], one can repetitively measure the inter-

action strength, δI = 2πt
∑M
α=1 sα2−α (in binary), to a

precision set by its smallest significant digit sM . To mea-

sure each digit, sk, requires a time, Tk = 2k

t , yielding a
total measurement time,

Ttot =
M∑

k=1

Tk = 2τM (1− 2−M ). (7)

A few observations are in order: (1) this procedure is
extremely efficient since the number of measurements M
scales logarithmically with the desired precision and (2)
the total measurement time Ttot is also the time-scale
over which the MBL qubits can now be expected to inter-
act coherently. This result implies that one can perform
coherent quantum manipulations in the infinite temper-
ature MBL phase with a preparation overhead scaling
only linearly in time.

Imperfections—In what follows, we analyze a variety of
realistic imperfections and provide a quantitive estimate
for achievable fidelities in a number of experimental sys-
tems. In particular, we will consider the effect of finite
spatial(`) and spectral(δω) resolution, leading to: (1) im-
perfect initialization, (2) off-resonant excitation, and (3)
population loss into nearby modes.

For single qubit gates, the fidelity is given by,

F1 ' 1− `

ξ1

(
1

T2E

)2

, (8)

where T2 characterizes the extrinsic decoherence time
and E represents the local spectral gap. The lack of in-
dividual addressability manifests as a ratio of the spatial
extent to the qubit localization length `/ξ1, while off-
resonant excitations induce an error ∼ 1/(T2E)2.

Turning to the fidelity for two qubit gates, we note that
finite resolutions (spatial and spectral) bring about two
consequences, namely, an optimal choice of qubit sep-
aration dopt and a renormalized bus localization length
ξ2 → ξ′ [38]. The former arises when the decoherence
rate begins to dominate the bare interaction strength,
while the latter occurs for line-widths larger than the
local spectral gap. The physics of this latter case is anal-
ogous to coupling a single bound state (qubit excitation)

with a multi-particle continuum (bus excitation) of ef-
fective mass m∗ ' 1/ta2, and leads to a renormalized
excitation size ξ′ ≈ a

√
tT2 [38, 40–42]. Combining these

two effects gives an overall fidelity,

F2 ∼ 1− (t/Γ)−1+ξ1/ξ
eff
2 , (9)

where Γ ' `2/tT 2
2 a

2 + 1/T2 is an effective decoherence

rate estimated from Fermi’s Golden rule and ξeff2 =
ξ2(ξ′) for spectrally (un)-resolved bus excitations.

Interestingly, these bounds are consistent with tradi-
tional quantum information processing schemes based
upon isolated qubits. In particular, for ξ1, ` → a and

ξ2 → ∞, one discovers Fopt2 ' 1 − (tT2)
−1+ 1√

tT2 . This
corresponds to two tightly localized qubits (e.g. atoms or
bound states) interacting via a band of delocalized states
(e.g. phonons or photons).
Fidelity Estimates—Our protocol applies most read-

ily to quantum optical systems with local addressing.
A number of such platforms are promising candidates
for realizing many-body localization, including ultracold
atoms, dipolar molecules, superconducting qubits, and
solid-state spins [43–46]. In the case of ultracold atoms,
a direct implementation of a spin system is feasible via
multi-component Fermi- or Bose-Hubbard models. From
recent experiments [47–49], the spatial resolution ` ∼ a,
the typical superexchange interaction strength t ∼ 10Hz,
and the coherence limited by particle loss T2 ∼ 3s are
feasible, yielding an overall fidelity F2 ≈ 0.92. Recent
progress towards the engineering of large superconduct-
ing flux-qubit arrays is particularly intriguing [50, 51];
disorder naturally arises from the fabrication process and
full tomography of the couplings within the system is
daunting. Thus, the ability to define MBL qubits in a
modular fashion is particularly applicable. With recent
coherence times [52] > 10µs, typical interaction strengths
∼ 1GHz, and individual flux-qubit control, one finds a
fidelity F2 ≈ 0.99. In the case of molecules and solid-
state spin impurities, the interactions are long-range and
the dominant disorder arises from random bonds. For ef-
fectively short-range power-laws, many-body localization
persists and the main idea of this work is still applicable
[26, 29, 30, 43].

In summary, we have introduced a scheme for the co-
herent control of local degrees of freedom in the many-
body localized phase. Our approach enables encoding
quantum information as well as to perform quantum logic
between separated MBL qubits. This suggests that in
certain cases, strongly disordered, interacting systems
may be a resource for quantum information applica-
tions. The ability to efficiently prepare (high temper-
ature) many-body eigenstates via local spectroscopy also
opens the door to studying coherent dynamics in the
MBL phase. By probing the decay of both classical and
quantum information, it may be possible to characterize
many-body localized states and their dynamics.
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[16] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.

110, 260601 (2013).
[17] S. Iyer, V. Oganesyan, G. Refael, and D. Huse, Phys.

Rev. B 87, 134202 (2013).
[18] Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath,

arXiv.org (2013), 1307.4092v2.
[19] B. Bauer and C. Nayak, Journal of Statistical Mechanics:

Theory and Experiment 2013, P09005 (2013).
[20] D. A. Huse, R. Nandkishore, and V. Oganesyan, Physical

Review B 90, 174202 (2014).
[21] R. Nandkishore, S. Gopalakrishnan, and D. A. Huse,

Phys. Rev. B 90, 064203 (2014).
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Supplemental Material for Quantum Control of Many-body Localized States

S. Choi, N. Y. Yao, S. Gopalakrishnan, M. D. Lukin

Numerical methods and details—Here, we provide full numerics for our protocol in both the spin-1 model in
Eq. (1) and the generic Heisenberg spin-1/2 model with random fields (Eq. 9). The general outline of the demonstration
is the following. First, for a given realization of a disordered Hamiltonian we numerically identify two qubit- and
bus-type excitations, located at positions L and R. Second, we compute the effective interaction strength between
qubits either with or without off-resonant coupling to the bus excitations. Third, we repeat this process for various
distances separating L and R and average the interaction strength over 500 realizations. Below, we provide the details
of this process for both spin-1 and spin-1/2 models, always setting the lattice spacing a = 1.

For the spin-1 model, we exactly diagonalize a system of 14 spins (Eq. 1) with ∆0 = 25,∆ = 15, h0 = h = 0.02,
and t = 1. The Hamiltonian conserves total z-magnetization,

∑
i S

z
i . Therefore, we only need to diagonalize a few

relevant symmetry sectors of the Hilbert space, namely, systems with up to four spin excitations starting from the
spin polarized state |G〉. A single qubit excited state at position i is identified as the energy eigenstate with the
largest overlap with Sxi |G〉 where Sxi is the spin flip operator at position i. We denote the eigenstate with a single
excitation at position L as

∣∣φL
〉
. In this simulation we choose L = 3. Similarly, we identify eigenstates with single

qubit excitations at various positions R = 8, 9, 10, 11, and 12th site and denote them as
∣∣φR

〉
. The eigenstates with

two qubit excitations
∣∣φLR

〉
and bus excitations at L(or R) are also identified in a similar way from SxR

∣∣φL
〉

and

SxL
∣∣φL
〉
(or SxR

∣∣φR
〉
), respectively. The off-resonant driving on the left qubit has been implemented by transforming

the Hamiltonian into the rotating frame with a rotating wave approximation. The time-dependent driving on the
right qubit has been numerically integrated over one period, and then the long time dynamics is studied in the Floquet
basis. As discussed in the main text, the effective interaction strength between the MBL qubits is directly calculated
from energy eigenvalues,

δI ≡ ELR − EL − ER + EG. (S1)

This is also the case for the driven hamiltonian in the Floquet basis, where energies are defined via logarithms of
unitary evolution. The average interaction strength as a function of distance is shown in Fig. S1a. We confirm the
exponential decay of the bare interaction strength δI with a length scale ξ1 ≈ 0.53 (blue solid line), which agrees with

our simple theoretical estimate
(
log ∆

t

)−1 ≈ 0.5. When the qubits are driven, the interaction is enhanced by several
orders of magnitude (red dash-dot line and green dotted line). Moreover, we observe that the enhanced interaction
strength scales quadratically in Ω/δ (see Fig. S1b), confirming the off-resonant dressing picture presented in Eq. (7)
of the main text.

We use a similar technique to simulate a system of 16 spins in the Heisenberg model, with t = 1 and ∆ = 7.5.
Again, the simulation supports up to four excitations from the polarized state |G〉. Unlike our spin-1 model, the
qubit excitations are identified by their energy eigenvalues; single spin excitations with the highest and the lowest
energies are used as

∣∣φL
〉

and
∣∣φR

〉
depending on their relative positions. A single excitation with either high or

low energy is expected to have a short localization length. Therefore, coupling to any subsequent excitations will,
on average, enhance the effective interaction. Note that our criteria of identifying qubit- and bus-excitations can be

FIG. S1. Effective interaction strength. (a) Interaction strength decays more weakly when either one or both qubits are
off-resonantly coupled to the bus excitations. (b) The enhanced interaction strength is quadratic in the ratio of Rabi frequency
to detuning Ω/δ as expected for off-resonant dressing. (c) Effective interaction strength decay for the random field Heisenberg
model.
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FIG. S2. Variation in the localization lengths. Left: the phase diagram of the random field Heisenberg spin-1/2 model as a
function of spin density and disorder. Middle: histograms of the inverse localization length for parameters shown in the left
panel. Right: mean and standard deviation of the inverse localization length in the strong disorder regime.

further optimized to achieve a stronger interaction enhancement. We estimate the positions of qubit excitations pL(R)

by maximizing |
〈
φL(R)

∣∣SxpL(R)
|G〉 |, and then identify bus excitations from SxpL+1

∣∣φL
〉

and SxpR−1

∣∣φR
〉
, i.e. nearest

subsequent excitations. The effective interaction strength as a function of distance is shown in Fig. S1c. Again, we
confirm that the enhancement is exponentially large at long distances. We emphasize that this model does not have
‘engineered’ localization lengths as in the spin-1 model.

The typical localization lengths of qubit and bus excitations can be obtained from the slopes in Fig. S1c, yielding
ξ1 ∼ 0.34 (blue solid line) and ξ2 ∼ 0.50 (red dash-dot line). These values are consistent with the probability
distribution of localization lengths studied in the next section.

Variation of localization lengths—Here, we provide numerics showing that a variation in localization lengths
always exists in the localized phase of the random field Heisenberg model (this variation is of course most pronounced
near the transition).

First, to work in the localized phase, we estimate the criticial disorder ∆/t for the many-body localization phase
transition for various spin excitation densities (relative to the polarized state |G〉). We follow the method used in Ref.
[1], and calculate the fraction of dynamical polarization at infinite temperature. The result is summarized in the left
panel of Fig. S2. We confirm that the transition occurs at ∆/t ∼ 5 for high densities, consistent with previous results
for small system sizes [1]. At low densities, the critical disorder is smaller, approaching the limit of the Anderson
localization criteria in 1D ∆/t→ 0.

We study the variation of localization lengths under various conditions. Here, we define the localization length of
excitations with respect to a particular a many-body eigenstate in the following way. First, we exactly diagonalize
a system of 12 spins, choosing an arbitrary energy eigenstate with total spin up density ns =

∑
i〈
(
Szi + 1

2

)
〉/N and

define it as our logical ground state |G〉 = |00〉. Then, we choose two “probing positions” Lp = 2 or 4 and Rp = 9
or 11 and identify all possible computational basis states (viz. |01〉, |10〉, and |11〉) as energy eigenstates that have
large enough overlap with S+

R |00〉, S+
L |00〉, and S+

LS
+
R |00〉; we also impose that these states satisfy the consistency

condition | 〈11|S+
L |01〉 |, | 〈11|S+

R |10〉 | > c with a threshold c = 0.01. The relative differences in the energy eigenvalues
of these states defines the interaction strength δint and the localization length ξ by

d/ξ ≡ − log

( |δint|
t

)
= − log

( |E11 − E10 − E01 + E00|
t

)
(S2)

where Eab is the energy eigenvalue for |ab〉 and the distance between two excitations d is computed in the same
way as in the previous section. We repeat this process for different logical ground states and disorder realizations;
various values of ns and ∆/t are shown as black squares (a-f) in Fig. S2(left). For each case, the histogram of inverse
localization lengths is shown in the middle panel of Fig. S2. Note that we have chosen to histogram 1/ξ rather than
ξ because the Jacobian induces long tails in ξ.

The mean of the inverse localization length increases with both decreasing spin density and increasing disorder
strength. It may seem that the variance of the distribution is also increasing with disorder strength in (a), (d), (e),
and (f); however, this behavior does not continue at larger disorder strengths. Rather, as shown in the right panel of
Fig. S2, the standard deviation saturates near ∆/t ∼ 30 while the mean continues to increase.

Initialization and DEER sequences— Here, we provide the detailed protocol for initializing the system into
an effective many-body eigenstate using a combination of DEER (double electron electron resonance) spin echo and
efficient quantum phase estimation [2, 3]. We assume that the quantum state of the system is initially in an unknown
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superposition of many-body eigenstates. Our goal is to efficiently prepare a quantum state such that the coherence
of qubit excitations and their interactions is maintained for sufficiently long times. In doing so, we only use local
operators and projective measurements limited to the accessible region of size `. We assume that we can start by
preparing the small local regions L(R) into their respective local eigenstates

∣∣0L(R)

〉
(e.g. eigenstates of τz spin

operators within the region) [4].
The state of the full system can be written in the τz basis as

|ψ0〉 =
∑

M

cM |0L〉 ⊗ |M〉 ⊗ |0R〉 (S3)

where M enumerates all (exponentially many) possible configurations for the uninitialized regions. Then, we perform
local spectroscopy in each region (L and R) in order to estimate the energy of a single excitation at the center of
the region. Due to the diagonal interactions in the MBL phase, the spectral lines for these excitations are broadened
by at most ∼ t exp (−l/ξ2). With ` � ξ2, one can resolve and manipulate individual localized excitations in each
region within a timescale ∼ t−1. We choose a single excitation in each region to use as our MBL qubits. These qubit
excitations interact with spins in the rest of the chain and therefore dephase over a time scale T ∼ t−1 exp (`/ξ2).
This dephasing can in principle be refocused by the spin echo sequence considered in Fig. S3a [2].

FIG. S3. Spin echo pulse sequences. (a) The dephasing of the left MBL qubit can be refocused via a simple Hahn echo. (b) a
modified spin echo sequence (DEER) isolates the dephasing of the left MBL qubit induced by interactions δI = δLR + δLMR.

For coherent interactions between MBL qubits, one needs to further initialize the system, since the interaction
strength δI depends on the configuration M of the uninitialized region. For a specific M , the interaction can be
written as δI = δLR + δLMR [4]. Here, one can understand δLR as the direct interaction between the two excitations
while δLMR is the contribution provided by all of the multi-body interactions mediated by τ -spins in the uninitialized
region. It is this dependence of δI on M that that prevents the coherent interaction between MBL qubits [2].
Interestingly, this problem can be solved by precisely measuring δI (to within δω) since the measurement serves as a
quantum non-demolition measurement for the configuration of the uninitialized region. Note that this simple solution
is only possible due to the lack of thermalization in the MBL phase.

For the measurement of δI , we consider a modified spin echo sequence, known as DEER, as depicted in Fig. S3b
[2]. This sequence refocuses the dephasing of the left MBL qubit induced by all but the MBL qubit on the right [2].
Each measurement of δI projects the many-body state of the system into a superposition of a few eigenstates that
share the values of δI consistent with the measurement outcomes. Note that we do not require the preparation of
a unique eigenstate as long as the prepared state enables coherent interactions between MBL qubits up to a desired
time scale T ∼ δω−1. Repeating the DEER sequence (followed by measurements of the left MBL qubit) with a free
evolution time τn measures the phase shift δIτn modulo 2π. Therefore, by varying the free evolution time τn = 2−n/δω
with n = 0, 1, 2, . . . , one can efficiently measure δI up to the desired precision δω [3]. This particular sequence of
τn is chosen such that the protocol minimizes the total evolution time and is well described in Ref. [3]. The total
measurement time

∑
τn scales linearly with the inverse of the desired resolution Tinit = ηδω, where a constant of

order unity η > 2 accounts for the repetition of the n = 0 step due to projection noise.

Fidelity estimates— Here ,we analyze the fidelity of single qubit and gates under various conditions. The single
qubit fidelity depends on both (i) whether the broadened spectral lines have power-law tails (e.g., a Lorentzian) or
fall off more rapidly (e.g., a Gaussian) and (ii) how the spatial resolution ` compares with ξ1. When ` . ξ1, local
level repulsion ensures that there are no levels within the local spectral gap E of the targeted level that couple to the
external driving field; when ` > ξ1, approximately δω/E levels per localization length are within the spatial extent of
the driving, where δω ∼ 1/T2 is the spectral resolution. Moreover, when the linewidth is Lorentzian, the dominant
imperfections are due to nearby transitions that use the tails ∼ (δω/E)2 of the Lorentzian (spectral imperfection);
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1−F1 Gaussian Lorentzian

` < ξ1 exp[−2E/δω] (δω/E)2

` > ξ1 (`/ξ1)× (δω/E) (`/ξ1)× (δω/E)

TABLE I. Fidelity of one-qubit gates for finite spectral and spatial resolution under various conditions. Two different types
of spectral profiles arise from different origins: Gaussian from inhomogeneous broadening, including the effects of the bare
un-enhanced interaction, and Lorentzian from homogeneous broadening, e.g., extrinsic decoherence processes.

whereas, for rapidly decaying tails, the dominant imperfections are due to distant, exponentially weak lines that are
within δω of the targeted line (spatial imperfection). Fidelities in the four cases are summarized in Table I.

We now focus on the fidelity of two qubit gates and derive Eq. (12) in the main text, which we present here again
for convenience,

F2 ' 1− (t/Γ)−1+ξ1/ξ
eff
2 (S4)

where Γ is an effective decoherence rate and ξeff2 is an effective localization length for bus excitations.
In general, the fidelity of a two qubit gate is given as

1−F2 '
max (Γ, δI)

δdriven
I

(S5)

where the numerator is the rate of decoherence due to either external imperfections or bare dephasing interactions,
while the denominator is the strength of the enhanced interaction. One can always optimize d such that δI(dopt) = Γ.

Then, using δdriven
I ∼ te−dopt/ξ

eff
2 , one can obtain Eq. (12). The dominant contributions to Γ and ξeff

2 vary under
differing conditions. First, ξeff

2 is either ξ2 or ξ′ ≈ a
√
tT2 depending on the spectral resolution. When 1/T2 is

larger than the typical energy spacing of bus-type excitations E2, one necessarilly couples a single MBL qubit with
multiple excitations. In this case, the spatial extent of the qubit is broadened in the same way as that of a bound
state coupled to a multi-particle contiuum of effective mass m∗ ≈ 1/ta2, leading to ξ′ ≈

√
T2/m∗ ≈ a

√
tT2 [5–7].

The effective decoherence rate Γ is limited by the rate of population loss as well as the extrinsic decoherence scale,
Γ = max (Γloss, 1/T2), where Γloss can be estimated using Fermi’s golden rule

Γloss ∼
1/T2

1/T 2
2 + ∆2

(
l

ξ2
Ω

)2
∆

E2
. (S6)

The first factor comes from the Lorentzian spectrum, the second from the effective coupling strength, and the last
from the density of bus excitation states. In order to maximize the size of the dressed qubit, ∆ needs to be as
small as possible, limited only by 1/T2. Therefore, we set Γ ∼ 1/(T 2

2 E2) (l/ξ2)
2
, wherein the corresponding optimal

spacing is given by dopt = ξ1 ln
[
tT2 min

(
1, T2E2ξ2

2/l
2
)]

. There is a cross over at l2/T2 = E2ξ2
2 ; when l2/T2 > E2ξ2

2 the
loss error limits the fidelity, and dopt has to be relatively small in order to to avoid long gate operation times. For
l2/T2 < E2ξ2

2 , the spectral lines of the bus-excitations are not resolved, but the fidelity remains limited by the number
of gate operations within a decoherence window. Thus, one finds

1−F2 ' (tT2)−1+ξ1/ξ
′
. (S7)

We can estimate the fundamental limit of our protocol by considering a system optimized for our purposes viz. a system
that supports different types of excitations with ξ2/ξ1 → ∞ with perfect spatial resolution and finite decoherence
time T2 < ∞. In this case the optimal fidelity is achieved from Eq. (S7). Consequently, in the limit ξ2 → ∞ and

ξ1 → a, we obtain Fopt2 ' 1− (tT2)
−1+ 1√

tT2 as presented in the main text.
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