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Magnetic impurities embedded in inert solids can exhibit long coherence times and interact with
one another via their intrinsic anisotropic dipolar interaction. We argue that, as a consequence
of these properties, disordered ensembles of magnetic impurities provide an effective platform for
realizing a controllable, tunable version of the dipolar quantum spin glass seen in LiHoxY1−xF4.
Specifically, we propose and analyze a system composed of dysprosium atoms embedded in solid
helium. We describe the phase diagram of the system and discuss the realizability and detectability
of the quantum spin glass and antiglass phases.

PACS numbers: 67.80.-s, 75.10.Nr

I. INTRODUCTION

Dipolar interactions between spins give rise to a wealth
of exotic phases in condensed-matter systems, of which
one of the most striking is the possible quantum spin glass
in lithium holmium fluoride (LiHoxY1−xF4)1–6. Equilib-
rium measurements on this material indicate the pres-
ence of a low-temperature spin glass phase for holmium
concentrations, x . 0.25. However, numerous surpris-
ing properties of a spin glass, especially those related
to its quantum-coherent far-from-equilibrium dynamics,
are difficult to directly probe in solid-state systems, due
to the impact of decoherence and relaxation channels
present. Moreover, a number of questions concerning the
equilibrium phase diagram are still open, e.g. whether
a low-temperature spin liquid or “antiglass” phase ex-
ists for x ≤ 0.05, and what are the consequences of the
transverse field on the phase diagram4,7.

The above questions are challenging to address in the
context of lithium holmium fluoride; for example, apply-
ing a transverse magnetic field induces random longitu-
dinal fields as a side-effect7. This motivates the realiza-
tion of dipolar quantum spin glasses in a well-isolated
setting with long coherence times. Although there have
been proposals to mimic the properties of spin and charge
glasses using ultracold atoms coupled to multimode cav-
ities8–11, it is also desirable to naturally realize a spin
glass using only bare dipolar interactions. Such a re-
alization would amount to a “quantum simulator” and
could shed light on the dynamical properties of quan-
tum glasses4. Generically, however, such a realization is
challenging for two related reasons. First, the number
of ultracold atoms achievable in experiment is inherently
small relative to condensed matter systems; this limi-
tation is particularly severe when studying the physics

of spin glasses, since the properties of disordered sys-
tems are dominated by isolated rare events, suppressed in
small systems12,13. Second, the dipole-dipole interaction
corresponding to experimentally feasible atomic densi-
ties is typically weak, rendering the interaction timescale
comparable to the decoherence timescale. These difficul-
ties motivate us to consider scalable realizations of dipo-
lar spin models in which the dipoles can be brought close
to one another while maintaining long coherence times.

In this work we discuss the feasibility of a scalable plat-
form based on “matrix isolation,” i.e. atoms or molecules
embedded in inert matrices such as solid helium, parahy-
drogen, or rare gases14. The technique of matrix isolation
is frequently used in chemical physics for high-resolution
spectroscopy of individual molecules and to study ba-
sic chemical reactions. In addition, this technique al-
lows one to acquire the spectra of chemical species, such
as radicals, whose reaction times are extremely fast in
the gas phase15–17. For sufficiently inert matrices, the
spectral lines of matrix-isolated species are sharper than
those in the gas phase, owing to the absence of motional
broadening—the atoms can be regarded as both fixed
in space and undisturbed by their environments. Un-
der these conditions, individual atoms possess very long
coherence times (T1, T2), and can be optically pumped,
with high efficiency, into a given internal state or set of
internal states18. As we show below, a matrix-embedded
atom can be regarded as a highly controllable, quantum-
coherent degree of freedom featuring strong dipolar inter-
actions, analogous to ultracold atoms in optical lattices19

and solid-state defect centers20,21.
While the distances between atoms or molecules in op-

tical lattices are limited by the optical wavelength of the
trapping laser to a minimum of a few hundred nanome-
ters, the separations between matrix-isolated atoms can
be in principle as small as a few tens of nanometers16.
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It is worth noting that recently proposed nanoplasmonic
structures can potentially allow to trap atoms at sub-
wavelength distances22, however, these do not allow
to create an ensemble of atoms randomly distributed
in three dimensions. The coherence times for matrix-
isolated species can be on the order of 1 second18 at tem-
peratures of about 1 K; atoms do not need to be cooled
down to nanoKelvin temperatures as it is the case in
optical lattice experiments. Furthermore, the range of
atoms and molecules that can be matrix isolated is quite
broad and is not limited to the species that can be laser
cooled23,24 or associated from ultracold atoms25,26. In
a way, atoms or molecules trapped in matrices behave
similarly to defects in solids20,21. However, such impuri-
ties can feature substantially higher magnetic or electric
dipole moments compared to defect centers, resulting in
significantly enhanced interaction strengths.

To be specific, in this work we consider dysprosium
atoms embedded at random sites of a solid helium matrix,
and discuss the possibility of realizing a dipolar quantum
spin glass in such a system. Dysprosium atoms strongly
interact with one another, but not, as we shall argue,
with the inert matrix. We indicate a scheme whereby the
dysprosium atoms can be optically pumped into a com-
bination of two magnetic states, which collectively form
an Ising spin. Thus, an interacting system of many dys-
prosium atoms can be mapped onto an Ising model with
dipolar interactions. Once randomness is included, the
effective model is precisely the one studied in Refs.3,13,
which is believed to describe the physics of LiHoF.

The paper is organized as follows. In Sec. II we discuss
the relevant energy scales for magnetic impurity atoms in
inert matrices, and present the optical pumping scheme
that can be used to realize Ising spins. In Sec. III we de-
scribe the expected phase diagram and provide a recipe
to detect and control the achievable phases, including
the spin glass and antiglass. In Sec. IV we discuss possi-
ble applications of the platform to exotic quantum mag-
netism. We compare the matrix isolation technique to
other ways of achieving strongly interacting dipole en-
sembles and summarize the conclusions of the present
work in Sec. V.

II. MAGNETIC ATOM IMPURITIES IN INERT
MATRICES

In this section we provide the estimates for coher-
ence times and optical pumping efficiency in a system
of matrix-isolated magnetic atoms, based on previously
obtained experimental data. As an impurity species
we choose dysprosium – the most magnetic atom in
the periodic table. Its bosonic and fermionic isotopes
have been recently brought to quantum degeneracy27,28,
which provides us a benchmark for comparison with
other ultracold atomic experiments. We note that using
matrix-isolated polar molecules29 can potentially result
in stronger dipole-dipole interactions between the impu-

rities, however, decoherence due to coupling to phonons
is also stronger for species possessing an electric dipole
moment30,31.

Light matrices, such as solid para-H2 and solid he-
lium are softer and less polarizable compared to heavier
ones (solid Ne, Ar, Xe, etc.)16,32. This allows to trap
atoms leaving their energy states almost intact and to
achieve long coherence times due to weak interaction with
phonons. Solid hydrogen is largely inert, and does not re-
act with atoms such as I or Cl; however, there have been
observed reactions of H2 with Ba and Hg in the excited
electronic state33, which might complicate optical pump-
ing. Since the reactions of H2 with magnetic rare-earth
atoms are largely unexplored, in this work we focus on
solid helium as a matrix that has been proven to be non-
reactive. The helium matrix behaves as an amorphous
solid close to a liquid, therefore the crystal fields and
phonon coupling strengths are typically weak32,34. This
motivated a number of studies of atomic impurities in He
to measure the electron electric dipole moment and to do
precision spectroscopy32,34,35. Kanorsky et al. demon-
strated optical pumping of cesium atoms trapped in solid
He and performed ESR spectroscopy with milliHertz res-
olution18. The group of Weis performed detailed optical
spectroscopic studies of Cs atoms in solid He36,37. Mag-
netic rare-earth atoms such as thulium have also been
isolated and studied in solid He, and narrow lines for
electronic transitions have been observed38. Gordon et
al. demonstrated another technique allowing to achieve
high impurity densities in solid Helium, corresponding to
interparticle distances of a few tens of nm.39,40

The ESR coherence times, T1 and T2, for Cs atoms in
solid He have been measured to be on the order of 1−2 s
and 0.1−0.2 s respectively18,41. Here we discuss two main
sources of decoherence in matrix-isolated dysprosium: (i)
spin-phonon relaxation, and (ii) dephasing due to the
nuclear spin bath of 3He impurities.

(i) We estimate the spin-phonon relaxation rates
within the most general framework. We consider the
Hamiltonian H = H0 + Vs-ph, where

H0 =
∆

2
σz +

∑
k

εka
†
kak (1)

corresponds to the uncoupled part and

Vs-ph = σx
∑
k

λkx(akx+a†kx)+σz
∑
k

λkz(akz+a†kz). (2)

is the spin-phonon interaction. Here σx,z are Pauli oper-
ators describing the impurity atom as an effective spin-

1/2 system, and a†k, ak give the creation and annihila-
tion operators for a phonon in mode k. We allow for the
possibility that the spin couples to different phonon op-
erators (indexed with x and z) in the longitudinal and
transverse directions, with corresponding strengths λkx
and λkz. At linear order in the spin-phonon interaction,
the influence of the phonons is determined purely by the
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spectral density,

Jξ(ω) =
π

2

∑
k

λ2kξδ(ω − ωk) (3)

where ξ = x, z. The σx term of eq. (2) allows for the
direct absorption or emission of a phonon with energy ε
accompanied by a spin-flip. Using Fermi’s golden rule,
the total rate for such a direct process is:

1

TD1
= 4J(ε)[2n(ε) + 1], (4)

where n(ε) = 1/(eβε − 1) is the boson occupation num-
ber. As expected, direct phonon-induced spin-flip pro-
cesses are important only at very low temperatures, be-
cause for ε � T the relevant density of states is highly
suppressed. Thus, typically, one finds that two-phonon
Raman-type processes42 dominate the phonon-induced
relaxation since they make use of the entire phonon spec-
trum. From Fermi’s golden rule at second order in cou-
pling,

1

TR1
=

32

π

∫
dω[2n(ω)n(ω + ε) + n(ω) + n(ω + ε)][

Jx(ω + ε)Jz(ω)

ω2
+
Jx(ω)Jz(ω + ε)

(ω + ε)2

]
. (5)

In solid He, we expect the relaxation to be dominated by
acoustic phonons whose density of states scales as ∼ ω2;
since the matrix elements scale as

√
ω, one finds that

J ∼ ω3. Such an approach is consistent with phenomeno-
logical decay associated with nitrogen-vacancy centers in
diamond42. While further experimental input is neces-
sary to provide the spectral density, one can make a con-
servative estimate for the T1 time of Dy based on exper-
iments performed with matrix-isolated Cs18. Assuming
that the larger magnetic dipole moment of Dy enhances
its coupling to phonons (a fact which depends on the
microscopic coupling mechanism), we expect, at worst,
T1 ∼ 10− 100 ms.

(ii) Now we consider dephasing due to the nuclear spin
bath. Since the concentration of 3He impurities which
carry a nonzero nuclear spin is only 0.000138%, this will
likely not be the dominant source of dephasing. Based on
the experimental results for Cs18,41, we use a simple scal-
ing argument in order to account for a larger magnetic
dipole moment of Dy. The resulting coherence time T2
due to the nuclear spin bath is approximately 100 ms.

Let us consider a bosonic isotope of dysprosium, e.g.
162Dy or 164Dy, whose ground electronic state is 5I8
(in the 2S+1LJ notation) possessing a dipole moment
of 10µB due to the spin and orbital electronic degrees
of freedom. As the first step, we initialize the system
by optically pumping all the Dy atoms into the MJ =
−8 component using σ−-polarized 626 nm excitation to
the (8, 1)o9 state (with a linewidth of γ = 135 kHz)43,
cf. Fig. 1(a). Assuming that relaxation redistributes the

MJ

(626 nm)

135 kHz

(8,1)9
0

5I8

σ− Ω . . . .

(a) (b)
±8

±7
±6

±1
0

FIG. 1. (a) Dysprosium atoms are optically pumped into
the MJ = −8 component of the ground 5I8 electronic state,
using σ−-polarized 626 nm excitation to the (8, 1)o9 state. (b)
The ground J = 8 level is split into 9 |MJ | components with
a π-polarized light far detuned from the 626 nm transition.
A multi-photon transverse field Ω connects the effective spin
states, MJ = −8 and MJ = +8, without populating any
intermediate levels.

population randomly between all the MJ states at rate
corresponding to T1 = 100 ms, and the regime of the
pumping Rabi frequency Ωpump � γ, we estimate the
optical pumping efficiency to be 94%. We note that
the many-body effects described in the following sec-
tions should be detectable provided that the pumping
efficiency significantly exceeds 50%.

Second, we use a π-polarized laser field44 far detuned
from the 626 nm transition, in order to achieve an anhar-
monic splitting of the J = 8 level into nine |MJ | compo-
nents, cf. Fig. 1(b). A transverse field Ω is realized by a
16-photon transition coupling MJ = −8 and MJ = +8,
by analogy to recent experiments on alkali atoms45,46 and
diatomic molecules47. Due to the anharmonicity of the
level structure, using at most 8 microwave fields polar-
ized along x or y and far-detuned from the intermedi-
ate levels allows to couple the MJ = ±8 states directly,
without populating any other states. Furthermore, the
anharmonicity of the level structure allows to avoid the
‘flip-flop’ processes driving the atoms out of the spin-1/2
manifold.

III. SPIN-GLASS PHYSICS

In this section we describe the many-body model that
we propose to engineer with magnetic atoms randomly
distributed inside of an inert matrix. Denoting the states
MJ = −8 and MJ = 8 as |↓〉 and |↑〉, respectively, the ef-
fective Hamiltonian of the system is that of a transverse-
field Ising model with dipolar interactions:

H =
∑
i

(Ωσix + ∆σiz) +
Vdd
2

∑
i 6=j

1− 3 cos2 θij
|ri − rj |3

σizσ
j
z, (6)
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FIG. 2. (a) Interaction of a test spin with a single dipolar spin,
indicating ferromagnetic (FM) and antiferromagnetic (AFM)
regions. (b) Interaction of a test spin with two dipolar spins.
Shaded regions indicate where the interaction is frustrated.

where Vdd = µ0µ
2/(4π), with µ0 the vacuum permeabil-

ity and µ the magnetic dipole moment of impurity atoms
(µ = 10µB in case of Dy). The quantization axis of the
spins is determined by the linear polarization of the off-
resonant laser, used to achieve the anharmonic splitting
of the J = 8 level, as described in Sec. II (this laser stays
on throughout the experiment). The detuning ∆ of the
microwave field will be used for preparing the desired
ground states of the transverse-field Ising model. The
vectors ri and rj give the positions of the interacting
dipoles, with ri − rj ≡ Rij = (Rij , θij , φij). The dipole-
dipole interaction of Eq. (6) is evidently ferromagnetic
for spins aligned head-to-tail, θij = 0, and antiferromag-
netic for spins aligned side by side, θij = π/2. As shown
in Fig. 2, this interaction is in general frustrated, there-
fore it is plausible that a system of randomly arranged
dipoles can possess a spin glass phase.

The Hamiltonian (6) naturally occurs in lithium
holmium fluoride (LiHoxY1−xF4)2. In this material a
fraction x of the lattice sites are randomly substituted by
Ising spins (Ho) which interact via a dipolar interaction,
resulting in the phase diagram shown in Fig. 3. If every
lattice site is occupied by an Ising spin, the ground state
is ferromagnetic, however a spin glass phase is known to
occur for a wide range of intermediate concentrations. Fi-
nally, as a result of quantum fluctuations, there appears
to be an “antiglass” phase2 as x → 0, cf. Fig. 3, whose
existence is still under active discussion7. In a system of
matrix-isolated magnetic atoms, instead of temperature,
we use a tunable transverse field Ω to destabilize the or-
dered states. In the Ising model, eq. (6), a transverse
field and a temperature typically have similar effects on
the phase diagram7,48, i.e., they both destabilize magnet-
ically ordered states.

We now discuss how the various phases of Fig. 3, in-
cluding the spin-glass, can be initialized and explored
using matrix-isolated magnetic atoms. We start by op-
tically pumping all the atoms into state | ↓〉, in the ab-
sence of microwave fields. Then we apply a microwave
field with a large detuning, ∆� Ω, Vdd, so that the state
with all atoms in |↓〉 is the ground state of the Hamilto-
nian, Eq. (6). The ferromagnetic phase can be prepared
by properly choosing the spin concentration x and the

0.5
x

Ω
Vdd

0 1.0

PM

SG

FM

AG?

~1

FIG. 3. Phase diagram of the system as a function of spin
concentration x, featuring paramagnetic (PM), ferromagnetic
(FM), spin-glass (SG), and a possible antiglass (AG) phases,
see Refs.2,7

ratio Ω/Vdd, cf. Fig. 3, and adiabatically turning off the
detuning ∆. The extent of the phase can be explored by
adiabatically tuning Ω.

In order to prepare the paramagnetic phase, after the
optical pumping, we apply a microwave field satisfying
∆ � Ω � Vdd. Then we turn off the detuning ∆ adi-
abatically relative to Ω but diabatically relative to Vdd,
which prepares each atom in state | ←〉 = (| ↑〉−| ↓〉)/

√
2.

Since Ω � Vdd, this prepares the paramagnetic ground
state of the Hamiltonian. Adiabatically tuning Ω allows
one to explore the extent of the paramagnetic phase. It
is worth pointing out that, equivalently, one could pre-
pare all atoms in state | ←〉 by applying a fast π/2 pulse
around the ŷ axis and then turning on an x̂ polarized
microwave field, Ω, phase-locked to the ŷ microwave.

The spin-glass phase can be prepared by starting in the
paramagenetic phase and adiabatically decreasing Ω to
some final value smaller than Vdd. If this is done slowly
enough in a finite system, the quantum paramagnetic
ground state adiabatically evolves across a second-order
phase transition7 into the spin-glass ground state. In
practice, the finite ramp speed will give rise to a finite
density of defects (corresponding to an effective “temper-
ature” that is proportional to the ramping rate) via the
Kibble-Zurek mechanism49,50. However, due to the sepa-
ration of timescales between Vdd and the minimum ramp
rate ∼ T−11 , these defects should not obscure the visibil-
ity of the spin glass. In addition, this might amount to
an experimentally efficient way of generating many-body
localized excitations in the spin glass phase51.

The various realizable phases can be easily identified
experimentally. The simplest case is the ferromagnet,
which possesses net magnetization that can be detected
via spin-dependent fluorescence. Other phases, such as
the paramagnet and the spin glass, have no net magneti-
zation and thus cannot be distinguished via fluorescence.
However, as shown in ref.10, there is a difference between
their excitation spectra, which can be used to tell the
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paramagnet and the spin glass apart spectroscopically.
Specifically, the linear response of the ground state to
a ŷ-polarized rf field at various frequencies will give ac-
cess to the spectral function according to Fermi’s Golden
Rule. In particular, deep in the gapped paramagnetic
phase (Ω� Vdd), there should be no rf absorption at fre-
quencies below the transverse field Ω, and a sharp peak
at this frequency. As the transition into the spin glass
is approached, this absorption peak moves to lower fre-
quencies as the excitation gap of the paramagnet closes.
The motion of the absorption peak to lower frequencies
can be resolved provided that the scale of the gap is much
larger than both T−11 or T−12 ; this condition holds in the
regime of interest. In particular, as the transverse field Ω
becomes comparable to the interaction strength Vdd, the
peak is expected to approach zero frequency and remain
there as a broad spectral feature for Ω < Vdd. The pres-
ence of such a broad feature at zero frequency across a
wide range of Ω (together with the absence of magnetic
ordering) would strongly suggest the presence of a spin
glass. Furthermore, the distinctive dynamical properties
of the spin glass — in particular, its slow dynamics —
can also be studied using a variety of approaches such as
quenches, which would probe aging and related phenom-
ena52,53.

Finally, we note that the proposed antiglass phase
would be straightforward to identify, as it would corre-
spond to a narrowing of the absorption spectrum, or al-
ternatively to well-defined Rabi oscillations4 at low trans-
verse field.

IV. APPLICATIONS TO EXOTIC QUANTUM
MAGNETISM

Powerful microwave dressing techniques borrowed from
the polar-molecule literature54–73 can be used to access
a great variety of Hamiltonians beyond the one given
in Eq. (6). Fermionic isotopes 161Dy and 163Dy have
nuclear spin I = 5/2; the resulting rich hyperfine level
structure paves the way to engineering a different and
possibly wider range of Hamiltonians compared to what
bosonic isotopes can offer. Following Refs.66,67,69,70, mi-
crowave dressing can be used to isolate (2S + 1) dressed
states in each atom. Projecting dipole-dipole interac-
tions on these states generates a Hamiltonian of the form
H = 1

2

∑
i 6=j Hij , where70

R3
ijHij = v(θij , φij) ·H, (7)

with v(θ, φ) = (Y2,0,Re[Y2,1], Im[Y2,1],Re[Y2,2], Im[Y2,2]),
where Y2,m(θ, φ) are the rank-2 spherical harmonics; H
is a five-component vector of Hamiltonians acting on the
Hilbert space of two spin-S systems at sites i and j. With
a sufficient number of microwave fields, as well as with
linear and quadratic Zeeman and Stark shifts (both AC
and DC), it is possible to fully and independently con-
trol each of the five components of H subject only to

the constraints of Hermiticity and symmetry under the
exchange of i and j. In the case of S = 1/2, dropping
constant terms, Eq. (7) reduces to70

R3
ijHij = v(θij , φij) · [Bx(Sxi + Sxj )

+By(Syi + Syj ) + Bz(S
z
i + Szj )

+JxxS
x
i S

x
j + JyyS

y
i S

y
j + JzzS

z
i S

z
j

+Jxy(Sxi S
y
j + Syi S

x
j ) + Jxz(S

x
i S

z
j + Szi S

x
j )

+Jyz(S
y
i S

z
j + Szi S

y
j )], (8)

where Bx, By, Bz, Jxx, Jyy, Jzz, Jxy, Jxz, and Jyz are
five-component vectors.

In the case of electric dipole-dipole interactions be-
tween polar molecules, specific level configurations have
already been obtained to realize a variety of special cases
of Eqs. (7,8). In particular, the Jxy and Jzz interactions
of Eq. (8) can be used to obtain an XXZ model with inter-
actions featuring a direction-dependent spin-anisotropy.
This model can be used to study symmetry-protected
topological phases on a ladder69. Furthermore, the inter-
actions Jxx, Jyy, and Jzz of Eq. (8) can be used70 to re-
alize the Kitaev honeycomb model in a nonzero magnetic
field (realized using terms Bx, By, and Bz) — a model
that supports exotic non-Abelian anyonic excitations74.
Finally, Eq. (7) can be used to realize the most general
spin-1 bilinear-biquadratic model75 with the Y2,0 angu-
lar dependence69. It would be particularly interesting to
follow Refs.69,76–82 and study how all of these spin Hamil-
tonians and the underlying phase transitions are affected
by the long-range nature of the interactions.

The specific examples mentioned above were developed
in the context of highly ordered arrays of polar molecules
trapped in optical lattices. One might be able to obtain
arrays of Dy atoms in a solid matrix by using masks for
implantation83. However, the resulting positions of the
atoms would still feature substantial uncertainty, which
will enable experimental studies and motivate theoretical
studies of the effects of disorder on the above mentioned
and other exotic spin models.

At sub-wavelength distances, the readout of individ-
ual atoms can be performed using a number of tech-
niques. One possibility is to rely on spectroscopic
addressability84 enabled by spatially varying magnetic
fields85–87 or Stark shifts88–90. Another option is to
rely on the nonlinearity of the atomic response to light
and thus employ techniques such as STED91, spin-
RESOLFT92–94, or dark-state-based techniques95–97.

V. CONCLUSIONS

In this work we presented a new platform for quantum
simulation of many-body systems based on strongly mag-
netic atoms trapped in inert matrices, which can be com-
plementary with other solid state approaches99. In par-
ticular, although solid-state defects such as NV centers
in diamond feature naturally long room-temperature co-
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TABLE I. Comparison of the proposed platform with the alternatives

System Spin number Spacing (nm) Vdd (Hz) T1 (s)
Matrix-isolated Dy (this work) macroscopic 10 106 & 0.1
Solid-state (LiHoF)7 macroscopic 1 109 < 0.01
NV centers in diamond20 macroscopic 50 400 & 1
Dysprosium in optical lattices27 105 500 10 & 1
Polar molecules (KRb)98 104 1000 250 & 1

herence times100, their interactions are limited to tens of
kHz at ∼ 10 nm spacing20,101,102. In addition to stronger
magnetic dipolar interactions, the density of magnetic
atoms can, in principle, be controlled via direct changes
during the embedding process; solid-state defects, on
the other hand, often require high-temperature annealing
steps which result in low conversion efficiencies. On the
other hand, compared to atoms in optical lattices19, the
proposed scheme offers an additional feature of scalabil-
ity, which is particularly important to study the physics
of disordered materials whose behavior is dominated by
rare events. For reference purposes, we provide the com-
parison of matrix-isolated Dy with alternative platforms
in Table I.

We have suggested that the platform can be used to
study the properties of the spin-glass phase and reveal
the existence of the antiglass phase in LiHoxY1−xF4,
and discussed possible applications to exotic quantum
magnetism. We focused on magnetic atoms isolated in
solid helium in order to make use of the experimental
data available on decoherence induced by a helium ma-
trix. However, high impurity densities can be much easier
achieved in matrices that are solid at ambient pressure,
such as parahydrogen.16 We hope that our paper will
prompt the experimental studies in this direction. Fur-

thermore, the proposed scheme can be realized with a
variety of magnetic atoms, such as Cr or Er, and po-
lar molecules, such as CO or OH. Although in this work
we have focused on coherent dynamics, the intrinsically
driven nature of the proposed system allows to use it
to study dissipative magnetic transitions103,104. Further-
more, the described approach is not limited to dipolar
systems and can be applied to other types of interactions,
e.g. quadrupole-quadrupole ones105,106.
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Hänsch, and A. Weis, Phys. Rev. A 54, R1010 (1996).
19 I. Bloch, J. Dalibard, and W. Zwerger, Reviews of Mod-

ern Physics 80, 885 (2008).



7

20 F. Jelezko and J. Wrachtrup, New J. Phys. 14, 105024
(2012).

21 W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine,
and D. D. Awschalom, Nature 479, 84 (2011).

22 M. Gullans, T. Tiecke, D. E. Chang, J. Feist, J. D.
Thompson, J. I. Cirac, P. Zoller, and M. D. L. 1, Phys.
Rev. Lett. 109, 235309 (2012).

23 H. J. Metcalf and P. V. D. Straten, Laser Cooling and
Trapping (Springer, 1999).

24 E. S. Shuman, J. F. Barry, and D. Demille, Nature 467,
820 (2010).
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56 H. P. Büchler, E. Demler, M. Lukin, A. Micheli,

N. Prokof’ev, G. Pupillo, and P. Zoller, Phys. Rev. Lett.
98, 060404 (2007).
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