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There exists a common perception that chlorophyll a concentrations in tidal coastal waters are unsuitable to be captured by remote
sensing techniques because of high water turbidity. In this study, we use band index measurements to separate active chlorophyll
pigments from other constituents in the water. Published single- and multiband spectral indices are used to establish a relationship
between algal chlorophyll concentration and reflectance data. We find an index which is suitable to map chlorophyll gradients in
the impoundments, ditches, and associated waterways of the Hackensack Meadowlands (NJ, USA). The resulting images clearly
depict the spatial distribution of plant pigments and their relationship with the biological conditions of the waters in the estuary.
Since these biological conditions are often determined by land usage, the methods in this paper provide a simple tool to address
water quality management issues in fragmented urban estuaries.
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1. INTRODUCTION

Since tidal coastal regions often contain suspended solids and
dissolved organic matter which confounds the existence of
chlorophyll a (Chl a), there exists a common perception that
Chl a concentrations in such regions are unsuitable to be
mapped by remote sensing [1]. Light reflected off a body of
water represents a weighted sampling of contributions from
water, suspended solids, and chlorophyll [2]. It remains a
challenge to develop optical measurements that can separate
photons absorbed by active chlorophyll pigments from
photons absorbed by other constituents. Currently, available
narrow band airborne spectrometers such as Hyperion,
AVRIS, AISA, and CASI offer the unique possibility to
separate the effects of different constituents using remote
sensing techniques [3]. This separation would aid scientists
in a variety of ways; indeed, levels of algae, Chl a, and
plant pigments have been used as indicators of primary
productivity and have been critical to the modeling and
understanding of the global carbon cycle [4].

Prior work has focused on identifying portions of
the spectrum, which are able to accurately predict the
concentrations of various constituents in water. For example,
it has been shown that the light absorption of gelbstoff
and detritus does not vary greatly and is confined to the
blue region of the spectrum; therefore, this absorption can
be easily modeled and separated from light absorbed by
phytoplankton [5]. The in situ reflectance of different water
types has also been measured; for instance, it has been
shown that the reflectance ranging from 650–750 nm is a
good predictor of Chl a [3, 6, 7]. Creating effective spectral
indices from reflectance measurements allows for the large-
scale discrimination of Chl a concentrations in bodies of
water. Although these spectral indices are developed for
use with reflectance measurements, in turbid waters, optical
signals correlated with Chl a are often masked by signals
from detritus or total suspended solids (TSSs) [8]. It is well
documented that in the presence of a strong absorption
background, measuring the rate of change of spectra with
respect to wavelength amplifies essential details in the spectra
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[9]. In particular, by using various manipulations of first and
second derivatives, it is possible to derive expressions which
show an excellent correlation with Chl a concentrations in
turbid waters [2, 10].

The purpose of this study is to test different optical
measurements against actual Chl a concentrations from
shallow coastal waters by using the derivatives of reflectance.
We use our findings to classify Chl a gradients from images
captured by aircraft-mounted hyperspectral remote sensors;
this allows us to delineate those natural and human forcing
functions which affect the biological conditions of water in
the estuary.

2. METHODS

The study site is located in the New Jersey Meadowlands
District along the lower Hackensack River in Lyndhurst, NJ,
USA (Supplementary Figure 1 in Supplementary Materials
available online at doi:10.1155/2008/146217). The impound-
ments have tidal influence and at high tide are no more than
four to five feet deep. The average salinity in these waters
is 5–8 ppm, turbidity varies around a baseline reading of 10
FTUs, and TSS averages at around 25 mg/L. A field campaign
was conducted to collect reflectance spectra (FieldSpec, Colo,
USA Pro Full Range Spectroradiometer from Analytical
Spectral Devices) along transects starting at the edge of
the impoundment and ending twenty meters inshore with
sampling points every two meters. Immediately after each
spectral measurement, a half liter water sample was drawn
from the first five inches of the surface, where the reflectance
measurement had taken place. Samples were stored on ice
for 24 hours and analyzed in the laboratory for total Chl
a concentration using acetone extraction [11] and for TSS
concentration using a gravimetric method [12].

Each component of the spectral reflectance is represented
by a different Nth order polynomial. Using the Lagrange
interpolation polynomial [13], we considered the zero-,
first-, and second-order derivatives (curves) for clear water,
turbid water, and algal chlorophyll in turbid water. The
spectral effects of water reflection are eliminated by the first
derivative (first-order effect) [2]. Similarly, spectral effects
from turbidity are removed by a second differentiation of
the polynomial (second-order effect). Mathematica, V5.2
(Wolfram Research, Oxfordshire, UK, 2006) was used to
calculate the first- and second-order derivatives from the raw
data using a seven-point numerical differentiation technique
derived from the Lagrange interpolation polynomial [2].
Since differentiation tends to enhance the magnitude of
noise in the spectra, the Savitzky-Goley algorithm [14] was
applied to smooth the data prior to calculating derivatives.
To determine the index which best maps our study site,
we calculate the coefficients between various indices and
Chl a/TSS values for each transect (using SPSS 11.5, III,
USA, 2005). The significance of the relationship is deter-
mined by using the analysis of variance test (ANOVA).
We consider the zero-, first-, and second-order derivatives
for the following published indices: R720 (for TSS estima-
tion) and R660-R695 (for Chlorophyll a estimation) from
Goodin et al. [2], R680/R670 from Szekielda et al. [7], and
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Figure 1: Chlorophyll a concentrations graphed against Hladik’s
index [15]. The figure depicts the coefficient of correlation for each
individual transect (T1, T2, and T3) and for the overall model.
The statistical significance of the relationship is calculated using the
ANOVA test and details can be found in supplementary Table 1.

(AVE(R650+R700)R675)/(AVE(R440+R550)) from Hladik
[15]. Since our spectral measurements started at 450 nm, we
modified Hladik’s index, replacing the reflectance values at
440 nm with ones measured at 450 nm.

Hyperspectral imagery of the entire lower Hackensack
River (8.288 hectares) was collected on October 5, 2004 using
the Airborne Imaging Spectroradiometer for Applications
(AISA) [16]. We utilize a mask to select only pixels that are
associated with open water; further, we ensure that pixels
used to estimate Chl a concentration were free of floating
vascular vegetation and did not include areas of exposed mud
flats. However, brightness differences between flight lines and
shadows remain a significant image-related error. It is our
assumption that these errors are associated with flight line
direction. Hladik’s index, which showed a strong correlation
to Chl a concentration for all transects, was selected to create
gradient images for the estuary. The index was entered in
ENVI’s BandMath function which results in a single-band
image where each pixel acquires the index value. Finally,
trophic state classes were assigned using Chl a concentration
as follows: oligotrophic < 2.6 μg/L, mesotrophic 2.6–7.3 μg/L,
eutrophic 7.3–20 μg/L, and hypereutrophic > 20 μg/L [17].

3. RESULTS AND DISCUSSION

Chl a concentration along our transects varied from 0.2 μg/L
to 35 μg/L, similar to what was observed for the fall season
in other studies [18, 19]. According to published trophic
scales in the fall season, these waters are oligotrophic or
mesotrophic and have low to moderate productivity with
intermediate to low clarity [17]. The results of the field study
show that TSS remains almost constant (r2 < 0.4) along
the entire length of the transects, while Chl a concentration
increased significantly (r2 > 0.85; P < .05) from near shore
to inshore (see Supplementary Figure 2). Spectra collected
from 15 cm above the water surface display the typical
peaks and troughs associated with living plant pigments (see
Supplementary Figure 3).
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Figure 2: Open waters of the New Jersey Meadowlands District
showing (a) the entire hydrological network of the District, (b) the
higher trophic state of tributaries as compared to the main channel,
(c) hydraulic connectivity beneath an abandoned railroad line, and
(d) stagnant water in a poorly draining ditch network.

The relationship between the indices and water con-
stituents was stronger in the overall model (N = 27, after
removal of three outliers) as compared to each individual
transect (Supplementary Table 1). Our field data not only
agreed with several band indices from the literature but
also conflicted with other published claims. For example,
Goodin et al. [2] suggested that the first derivative of R720
may estimate TSS, but our data showed no relationship
between the first derivative of R720 and TSS. It is important
to note that this is consistent with claims within [2]
since the wavelengths chosen by Goodin et al. are for
comparison purposes to evaluate the performance of the
derivative method. In particular, these wavelengths were not
intended to be predictive indicators. On the other hand,
our data clearly verified that the index of Szekielda et al.
(R680)/(670) is a good estimator of Chl a showing a strong
relationship with plant pigment in all transects as well as
in the overall model. Additionally, Hladik’s index showed

a very strong relationship between the raw/first derivative
and Chl a concentration; this relationship held true for both
individual transects and for the overall model (see Figure 1
Supplementary Table 1).

Based on our field measurement results, Hladik’s index
was selected for mapping the Chl a concentration in the
District’s hydrological network, the results of which are
shown in Figure 2. First, we used Hladik’s overall model,
with r2 = 0.853 to classify all open water pixels. Since
this model is not as accurate for concentrations lower than
2.6 μg/L, we selected all pixels that were classified by the
overall model as having 2.6 μg/L or less of Chl a and
reclassified them using Hladik’s T3 index model, with r2 =
0.741. Figures 2(a)–2(d) show the results of the Chl a image
classification. The entire open water surfaces in the District
are shown in Figure 2(a). Tide restricted impoundments
to the south west show the greatest productivity; this is
in agreement with field observations in these areas which
are characterized by chronic algal scum and macrophyte
problems. On the other hand, the main channel of the
river is mainly oligotrophic with mesotrophic areas to the
north, which are connected to eutrophic tributaries that
have their origins in urbanized areas. Figure 2(b) presents
a tributary showing pockets of hypereutrophic waters along
its course. The largest of these pockets to the north is
clearly linked to several industrial facilities. As the tributary
meanders through wetlands and away from developed sites,
it becomes less productive emphasizing the role of wetlands
in improving water clarity. It also shows the trophic status
increasing upstream as it connects with urban development.
The hydraulic connectivity beneath an abandoned railroad
connecting a tide-restricted impoundment with hypereu-
trophic waters to an oligotrophic water body off the main
river channel is captured by Figure 2(c). Finally, Figure 2(d)
shows a network of ditches and channels holding stagnant
waters, which over time become a breeding ground for
mosquitoes.

4. CONCLUSION

Our results show that there are band indices which effectively
capture plant pigment concentrations in highly turbid
waters. Additionally, our study depicts the ability, in some
cases [7], for the reflectance rate of change expressed through
a mathematical derivative to further separate the effects of
turbidity from those of Chl a; this is an essential aspect of
mapping turbid waters since it strengthens the index-plant
pigment relationship. We find that Hladik’s index shows
the strongest relationship with Chl a when all data points
(N = 27) are taken into account. This index captures the
area of variability for light absorption and reflection in the
red and NIR; further, the index is normalized with respect
to the dissolved organic fraction in the blue segment of the
spectra. Our field transects cover a representative chlorophyll
range for the entire estuary and regressions result in a
highly significant overall model. The resulting images clearly
showed Chl a gradients as represented by the trophic state.
Thus, our method allows for an inspection of the Chl a
concentration in relation to human land use and provides
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a clear link between the different manmade forcing functions
that are driving the biological conditions of the waters in the
estuary.
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